Linear convergence in the approximation of rank-one convex envelopes
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 38 (2004) no. 5, pp. 811-820

Voir la notice de l'article provenant de la source Numdam

A linearly convergent iterative algorithm that approximates the rank-1 convex envelope f rc of a given function f: n×m , i.e. the largest function below f which is convex along all rank-1 lines, is established. The proposed algorithm is a modified version of an approximation scheme due to Dolzmann and Walkington.

DOI : 10.1051/m2an:2004040
Classification : 65K10, 74G15, 74G65, 74N99
Keywords: nonconvex variational problem, calculus of variations, relaxed variational problems, rank-1 convex envelope, microstructure, iterative algorithm
@article{M2AN_2004__38_5_811_0,
     author = {Bartels, S\"oren},
     title = {Linear convergence in the approximation of rank-one convex envelopes},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {811--820},
     publisher = {EDP-Sciences},
     volume = {38},
     number = {5},
     year = {2004},
     doi = {10.1051/m2an:2004040},
     mrnumber = {2104430},
     zbl = {1083.65058},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an:2004040/}
}
TY  - JOUR
AU  - Bartels, Sören
TI  - Linear convergence in the approximation of rank-one convex envelopes
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2004
SP  - 811
EP  - 820
VL  - 38
IS  - 5
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an:2004040/
DO  - 10.1051/m2an:2004040
LA  - en
ID  - M2AN_2004__38_5_811_0
ER  - 
%0 Journal Article
%A Bartels, Sören
%T Linear convergence in the approximation of rank-one convex envelopes
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2004
%P 811-820
%V 38
%N 5
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an:2004040/
%R 10.1051/m2an:2004040
%G en
%F M2AN_2004__38_5_811_0
Bartels, Sören. Linear convergence in the approximation of rank-one convex envelopes. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 38 (2004) no. 5, pp. 811-820. doi: 10.1051/m2an:2004040

Cité par Sources :