Voir la notice de l'article provenant de la source Numdam
We analyze a new formulation of the Stokes equations in three-dimensional axisymmetric geometries, relying on Fourier expansion with respect to the angular variable: the problem for each Fourier coefficient is two-dimensional and has six scalar unknowns, corresponding to the vector potential and the vorticity. A spectral discretization is built on this formulation, which leads to an exactly divergence-free discrete velocity. We prove optimal error estimates.
@article{M2AN_2004__38_5_781_0, author = {Abdellatif, Nehla and Bernardi, Christine}, title = {A new formulation of the {Stokes} problem in a cylinder, and its spectral discretization}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {781--810}, publisher = {EDP-Sciences}, volume = {38}, number = {5}, year = {2004}, doi = {10.1051/m2an:2004039}, mrnumber = {2104429}, zbl = {1079.76055}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an:2004039/} }
TY - JOUR AU - Abdellatif, Nehla AU - Bernardi, Christine TI - A new formulation of the Stokes problem in a cylinder, and its spectral discretization JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2004 SP - 781 EP - 810 VL - 38 IS - 5 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an:2004039/ DO - 10.1051/m2an:2004039 LA - en ID - M2AN_2004__38_5_781_0 ER -
%0 Journal Article %A Abdellatif, Nehla %A Bernardi, Christine %T A new formulation of the Stokes problem in a cylinder, and its spectral discretization %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2004 %P 781-810 %V 38 %N 5 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an:2004039/ %R 10.1051/m2an:2004039 %G en %F M2AN_2004__38_5_781_0
Abdellatif, Nehla; Bernardi, Christine. A new formulation of the Stokes problem in a cylinder, and its spectral discretization. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 38 (2004) no. 5, pp. 781-810. doi: 10.1051/m2an:2004039
Cité par Sources :