A posteriori error analysis of the fully discretized time-dependent Stokes equations
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 38 (2004) no. 3, pp. 437-455

Voir la notice de l'article provenant de la source Numdam

The time-dependent Stokes equations in two- or three-dimensional bounded domains are discretized by the backward Euler scheme in time and finite elements in space. The error of this discretization is bounded globally from above and locally from below by the sum of two types of computable error indicators, the first one being linked to the time discretization and the second one to the space discretization.

DOI : 10.1051/m2an:2004021
Classification : 65N30, 65N15, 65J15
Keywords: time-dependent Stokes equations, a posteriori error estimates, backward Euler scheme, finite elements
@article{M2AN_2004__38_3_437_0,
     author = {Bernardi, Christine and Verf\"urth, R\"udiger},
     title = {A posteriori error analysis of the fully discretized time-dependent {Stokes} equations},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {437--455},
     publisher = {EDP-Sciences},
     volume = {38},
     number = {3},
     year = {2004},
     doi = {10.1051/m2an:2004021},
     mrnumber = {2075754},
     zbl = {1079.76042},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an:2004021/}
}
TY  - JOUR
AU  - Bernardi, Christine
AU  - Verfürth, Rüdiger
TI  - A posteriori error analysis of the fully discretized time-dependent Stokes equations
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2004
SP  - 437
EP  - 455
VL  - 38
IS  - 3
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an:2004021/
DO  - 10.1051/m2an:2004021
LA  - en
ID  - M2AN_2004__38_3_437_0
ER  - 
%0 Journal Article
%A Bernardi, Christine
%A Verfürth, Rüdiger
%T A posteriori error analysis of the fully discretized time-dependent Stokes equations
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2004
%P 437-455
%V 38
%N 3
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an:2004021/
%R 10.1051/m2an:2004021
%G en
%F M2AN_2004__38_3_437_0
Bernardi, Christine; Verfürth, Rüdiger. A posteriori error analysis of the fully discretized time-dependent Stokes equations. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 38 (2004) no. 3, pp. 437-455. doi: 10.1051/m2an:2004021

Cité par Sources :