Voir la notice de l'article provenant de la source Numdam
The Benney-Luke equation (BL) is a model for the evolution of three-dimensional weakly nonlinear, long water waves of small amplitude. In this paper we propose a nearly conservative scheme for the numerical resolution of (BL). Moreover, it is known (Paumond, Differential Integral Equations 16 (2003) 1039-1064; Pego and Quintero, Physica D 132 (1999) 476-496) that (BL) is linked to the Kadomtsev-Petviashvili equation for almost one-dimensional waves propagating in one direction. We study here numerically the link between (KP) and (BL) and we point out the coupling effects emerging by considering two solitary waves propagating in two opposite directions.
@article{M2AN_2004__38_3_419_0, author = {Labb\'e, St\'ephane and Paumond, Lionel}, title = {Numerical comparisons of two long-wave limit models}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {419--436}, publisher = {EDP-Sciences}, volume = {38}, number = {3}, year = {2004}, doi = {10.1051/m2an:2004020}, mrnumber = {2075753}, zbl = {1130.76324}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an:2004020/} }
TY - JOUR AU - Labbé, Stéphane AU - Paumond, Lionel TI - Numerical comparisons of two long-wave limit models JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2004 SP - 419 EP - 436 VL - 38 IS - 3 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an:2004020/ DO - 10.1051/m2an:2004020 LA - en ID - M2AN_2004__38_3_419_0 ER -
%0 Journal Article %A Labbé, Stéphane %A Paumond, Lionel %T Numerical comparisons of two long-wave limit models %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2004 %P 419-436 %V 38 %N 3 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an:2004020/ %R 10.1051/m2an:2004020 %G en %F M2AN_2004__38_3_419_0
Labbé, Stéphane; Paumond, Lionel. Numerical comparisons of two long-wave limit models. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 38 (2004) no. 3, pp. 419-436. doi: 10.1051/m2an:2004020
Cité par Sources :