Voir la notice de l'article provenant de la source Numdam
A high-order compact finite difference scheme for a fully nonlinear parabolic differential equation is analyzed. The equation arises in the modeling of option prices in financial markets with transaction costs. It is shown that the finite difference solution converges locally uniformly to the unique viscosity solution of the continuous equation. The proof is based on a careful study of the discretization matrices and on an abstract convergence result due to Barles and Souganides.
@article{M2AN_2004__38_2_359_0, author = {D\"uring, Bertram and Fourni\'e, Michel and J\"ungel, Ansgar}, title = {Convergence of a high-order compact finite difference scheme for a nonlinear {Black-Scholes} equation}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {359--369}, publisher = {EDP-Sciences}, volume = {38}, number = {2}, year = {2004}, doi = {10.1051/m2an:2004018}, zbl = {1124.91031}, mrnumber = {2069151}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an:2004018/} }
TY - JOUR AU - Düring, Bertram AU - Fournié, Michel AU - Jüngel, Ansgar TI - Convergence of a high-order compact finite difference scheme for a nonlinear Black-Scholes equation JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2004 SP - 359 EP - 369 VL - 38 IS - 2 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an:2004018/ DO - 10.1051/m2an:2004018 LA - en ID - M2AN_2004__38_2_359_0 ER -
%0 Journal Article %A Düring, Bertram %A Fournié, Michel %A Jüngel, Ansgar %T Convergence of a high-order compact finite difference scheme for a nonlinear Black-Scholes equation %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2004 %P 359-369 %V 38 %N 2 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an:2004018/ %R 10.1051/m2an:2004018 %G en %F M2AN_2004__38_2_359_0
Düring, Bertram; Fournié, Michel; Jüngel, Ansgar. Convergence of a high-order compact finite difference scheme for a nonlinear Black-Scholes equation. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 38 (2004) no. 2, pp. 359-369. doi: 10.1051/m2an:2004018
Cité par Sources :