Voir la notice de l'article provenant de la source Numdam
We perform a complete study of the truncation error of the Jacobi-Anger series. This series expands every plane wave in terms of spherical harmonics . We consider the truncated series where the summation is performed over the ’s satisfying . We prove that if is large enough, the truncated series gives rise to an error lower than as soon as satisfies where is the Lambert function and are pure positive constants. Numerical experiments show that this asymptotic is optimal. Those results are useful to provide sharp estimates for the error in the fast multipole method for scattering computation.
@article{M2AN_2004__38_2_371_0, author = {Carayol, Quentin and Collino, Francis}, title = {Error estimates in the fast multipole method for scattering problems. {Part} 1 : truncation of the {Jacobi-Anger} series}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {371--394}, publisher = {EDP-Sciences}, volume = {38}, number = {2}, year = {2004}, doi = {10.1051/m2an:2004017}, mrnumber = {2069152}, zbl = {1077.41027}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an:2004017/} }
TY - JOUR AU - Carayol, Quentin AU - Collino, Francis TI - Error estimates in the fast multipole method for scattering problems. Part 1 : truncation of the Jacobi-Anger series JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2004 SP - 371 EP - 394 VL - 38 IS - 2 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an:2004017/ DO - 10.1051/m2an:2004017 LA - en ID - M2AN_2004__38_2_371_0 ER -
%0 Journal Article %A Carayol, Quentin %A Collino, Francis %T Error estimates in the fast multipole method for scattering problems. Part 1 : truncation of the Jacobi-Anger series %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2004 %P 371-394 %V 38 %N 2 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an:2004017/ %R 10.1051/m2an:2004017 %G en %F M2AN_2004__38_2_371_0
Carayol, Quentin; Collino, Francis. Error estimates in the fast multipole method for scattering problems. Part 1 : truncation of the Jacobi-Anger series. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 38 (2004) no. 2, pp. 371-394. doi: 10.1051/m2an:2004017
Cité par Sources :