A note on (2𝖪+1)-point conservative monotone schemes
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 38 (2004) no. 2, pp. 345-357

Voir la notice de l'article provenant de la source Numdam

First-order accurate monotone conservative schemes have good convergence and stability properties, and thus play a very important role in designing modern high resolution shock-capturing schemes. Do the monotone difference approximations always give a good numerical solution in sense of monotonicity preservation or suppression of oscillations? This note will investigate this problem from a numerical point of view and show that a (2K+1)-point monotone scheme may give an oscillatory solution even though the approximate solution is total variation diminishing, and satisfies maximum principle as well as discrete entropy inequality.

DOI : 10.1051/m2an:2004016
Classification : 35L65, 65M06, 65M10
Keywords: hyperbolic conservation laws, finite difference scheme, monotone scheme, convergence, oscillation
@article{M2AN_2004__38_2_345_0,
     author = {Tang, Huazhong and Warnecke, Gerald},
     title = {A note on $\sf (2K+1)$-point conservative monotone schemes},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {345--357},
     publisher = {EDP-Sciences},
     volume = {38},
     number = {2},
     year = {2004},
     doi = {10.1051/m2an:2004016},
     mrnumber = {2069150},
     zbl = {1075.65113},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an:2004016/}
}
TY  - JOUR
AU  - Tang, Huazhong
AU  - Warnecke, Gerald
TI  - A note on $\sf (2K+1)$-point conservative monotone schemes
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2004
SP  - 345
EP  - 357
VL  - 38
IS  - 2
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an:2004016/
DO  - 10.1051/m2an:2004016
LA  - en
ID  - M2AN_2004__38_2_345_0
ER  - 
%0 Journal Article
%A Tang, Huazhong
%A Warnecke, Gerald
%T A note on $\sf (2K+1)$-point conservative monotone schemes
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2004
%P 345-357
%V 38
%N 2
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an:2004016/
%R 10.1051/m2an:2004016
%G en
%F M2AN_2004__38_2_345_0
Tang, Huazhong; Warnecke, Gerald. A note on $\sf (2K+1)$-point conservative monotone schemes. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 38 (2004) no. 2, pp. 345-357. doi: 10.1051/m2an:2004016

Cité par Sources :