Voir la notice de l'article provenant de la source Numdam
We consider discontinuous as well as continuous Galerkin methods for the time discretization of a class of nonlinear parabolic equations. We show existence and local uniqueness and derive optimal order optimal regularity a priori error estimates. We establish the results in an abstract Hilbert space setting and apply them to a quasilinear parabolic equation.
@article{M2AN_2004__38_2_261_0, author = {Akrivis, Georgios and Makridakis, Charalambos}, title = {Galerkin time-stepping methods for nonlinear parabolic equations}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {261--289}, publisher = {EDP-Sciences}, volume = {38}, number = {2}, year = {2004}, doi = {10.1051/m2an:2004013}, mrnumber = {2069147}, zbl = {1085.65094}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an:2004013/} }
TY - JOUR AU - Akrivis, Georgios AU - Makridakis, Charalambos TI - Galerkin time-stepping methods for nonlinear parabolic equations JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2004 SP - 261 EP - 289 VL - 38 IS - 2 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an:2004013/ DO - 10.1051/m2an:2004013 LA - en ID - M2AN_2004__38_2_261_0 ER -
%0 Journal Article %A Akrivis, Georgios %A Makridakis, Charalambos %T Galerkin time-stepping methods for nonlinear parabolic equations %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2004 %P 261-289 %V 38 %N 2 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an:2004013/ %R 10.1051/m2an:2004013 %G en %F M2AN_2004__38_2_261_0
Akrivis, Georgios; Makridakis, Charalambos. Galerkin time-stepping methods for nonlinear parabolic equations. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 38 (2004) no. 2, pp. 261-289. doi: 10.1051/m2an:2004013
Cité par Sources :