Voir la notice de l'article provenant de la source Numdam
We consider the numerical solution of diffusion problems in for and for in dimension . We use a wavelet based sparse grid space discretization with mesh-width and order , and discontinuous Galerkin time-discretization of order on a geometric sequence of many time steps. The linear systems in each time step are solved iteratively by GMRES iterations with a wavelet preconditioner. We prove that this algorithm gives an -error of for where is the total number of operations, provided that the initial data satisfies with and that is smooth in for . Numerical experiments in dimension up to confirm the theory.
@article{M2AN_2004__38_1_93_0, author = {Petersdorff, Tobias Von and Schwab, Christoph}, title = {Numerical solution of parabolic equations in high dimensions}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {93--127}, publisher = {EDP-Sciences}, volume = {38}, number = {1}, year = {2004}, doi = {10.1051/m2an:2004005}, mrnumber = {2073932}, zbl = {1083.65095}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an:2004005/} }
TY - JOUR AU - Petersdorff, Tobias Von AU - Schwab, Christoph TI - Numerical solution of parabolic equations in high dimensions JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2004 SP - 93 EP - 127 VL - 38 IS - 1 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an:2004005/ DO - 10.1051/m2an:2004005 LA - en ID - M2AN_2004__38_1_93_0 ER -
%0 Journal Article %A Petersdorff, Tobias Von %A Schwab, Christoph %T Numerical solution of parabolic equations in high dimensions %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2004 %P 93-127 %V 38 %N 1 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an:2004005/ %R 10.1051/m2an:2004005 %G en %F M2AN_2004__38_1_93_0
Petersdorff, Tobias Von; Schwab, Christoph. Numerical solution of parabolic equations in high dimensions. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 38 (2004) no. 1, pp. 93-127. doi: 10.1051/m2an:2004005
Cité par Sources :