The effect of reduced integration in the Steklov eigenvalue problem
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 38 (2004) no. 1, pp. 27-36.

Voir la notice de l'article provenant de la source Numdam

In this paper we analyze the effect of introducing a numerical integration in the piecewise linear finite element approximation of the Steklov eigenvalue problem. We obtain optimal order error estimates for the eigenfunctions when this numerical integration is used and we prove that, for singular eigenfunctions, the eigenvalues obtained using this reduced integration are better approximations than those obtained using exact integration when the mesh size is small enough.

DOI : 10.1051/m2an:2004002
Classification : 65D30, 65N25, 65N30
Keywords: finite elements, Steklov eigenvalue problem, reduced integration
@article{M2AN_2004__38_1_27_0,
     author = {Armentano, Maria G.},
     title = {The effect of reduced integration in the {Steklov} eigenvalue problem},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {27--36},
     publisher = {EDP-Sciences},
     volume = {38},
     number = {1},
     year = {2004},
     doi = {10.1051/m2an:2004002},
     mrnumber = {2073929},
     zbl = {1077.65115},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an:2004002/}
}
TY  - JOUR
AU  - Armentano, Maria G.
TI  - The effect of reduced integration in the Steklov eigenvalue problem
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2004
SP  - 27
EP  - 36
VL  - 38
IS  - 1
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an:2004002/
DO  - 10.1051/m2an:2004002
LA  - en
ID  - M2AN_2004__38_1_27_0
ER  - 
%0 Journal Article
%A Armentano, Maria G.
%T The effect of reduced integration in the Steklov eigenvalue problem
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2004
%P 27-36
%V 38
%N 1
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an:2004002/
%R 10.1051/m2an:2004002
%G en
%F M2AN_2004__38_1_27_0
Armentano, Maria G. The effect of reduced integration in the Steklov eigenvalue problem. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 38 (2004) no. 1, pp. 27-36. doi : 10.1051/m2an:2004002. http://geodesic.mathdoc.fr/articles/10.1051/m2an:2004002/

[1] M.G. Armentano and R.G. Durán, Mass lumping or not mass lumping for eigenvalue problems. Numer. Methods Partial Differential Equations 19 (2003) 653-664. | Zbl

[2] I. Babuska and J. Osborn, Eigenvalue Problems, Handbook of Numerical Analysis, Vol. II. Finite Element Methods (Part. 1) (1991). | Zbl | MR

[3] U. Banerjee and J. Osborn, Estimation of the effect of numerical integration in finite element eigenvalue approximation. Numer. Math. 56 (1990) 735-762. | Zbl

[4] F.B. Belgacem and S.C. Brenner, Some nonstandard finite element estimates with applications to 3D Poisson and Signorini problems. Electron. Trans. Numer. Anal. 12 (2001) 134-148. | Zbl

[5] A. Bermudez, R. Rodriguez and D. Santamarina, A finite element solution of an added mass formulation for coupled fluid-solid vibrations. Numer. Math. 87 (2000) 201-227. | Zbl

[6] S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods. Springer-Verlag, New York (1994). | Zbl | MR

[7] P. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978). | Zbl | MR

[8] P. Grisvard, Elliptic Problems in Nonsmooth Domain. Pitman Boston (1985). | Zbl | MR

[9] H.J.-P. Morand and R. Ohayon, Interactions Fluids-Structures. Rech. Math. Appl. 23 (1985).

[10] H.F. Weinberger, Variational Methods for Eigenvalue Approximation. SIAM, Philadelphia (1974). | Zbl | MR

Cité par Sources :