Voir la notice de l'article provenant de la source Numdam
The aim of this paper is to find estimates of the Green's function of stationary discrete shock profiles and discrete boundary layers of the modified Lax-Friedrichs numerical scheme, by using techniques developed by Zumbrun and Howard [27] in the continuous viscous setting.
@article{M2AN_2003__37_1_1_0, author = {Godillon, Pauline}, title = {Green's function pointwise estimates for the modified {Lax-Friedrichs} scheme}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1--39}, publisher = {EDP-Sciences}, volume = {37}, number = {1}, year = {2003}, doi = {10.1051/m2an:2003022}, zbl = {1038.35036}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an:2003022/} }
TY - JOUR AU - Godillon, Pauline TI - Green's function pointwise estimates for the modified Lax-Friedrichs scheme JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2003 SP - 1 EP - 39 VL - 37 IS - 1 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an:2003022/ DO - 10.1051/m2an:2003022 LA - en ID - M2AN_2003__37_1_1_0 ER -
%0 Journal Article %A Godillon, Pauline %T Green's function pointwise estimates for the modified Lax-Friedrichs scheme %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2003 %P 1-39 %V 37 %N 1 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an:2003022/ %R 10.1051/m2an:2003022 %G en %F M2AN_2003__37_1_1_0
Godillon, Pauline. Green's function pointwise estimates for the modified Lax-Friedrichs scheme. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 37 (2003) no. 1, pp. 1-39. doi : 10.1051/m2an:2003022. http://geodesic.mathdoc.fr/articles/10.1051/m2an:2003022/
[1] Stability of semi-discrete shock profiles by means of an Evans function in infinite dimensions. J. Dynam. Differential Equations 14 (2002) 613-674. | Zbl
,[2] Alternate Evans functions and viscous shock waves. SIAM J. Math. Anal. 32 (2001) 929-962. | Zbl
, and ,[3] Unstable Godunov discrete profiles for steady shock waves. SIAM J. Numer. Anal. 35 (1998) 2272-2297. | Zbl
, and ,[4] Numerical boundary layers for hyperbolic systems in 1-D. ESAIM: M2AN 35 (2001) 91-106. | Zbl | mathdoc-id
and ,[5] Hyperbolic conservation laws in continuum physics. Springer (2000). | Zbl | MR
,[6] The gap lemma and geometric criteria for instability of viscous shock profiles. Comm. Pure Appl. Math. 51 (1998) 797-855. | Zbl
and ,[7] Étude des conditions aux limites pour un système strictement hyberbolique via l'approximation parabolique. C.R. Acad. Sci. Paris Sér. I Math. 319 (1994) 377-382. | Zbl
and ,[8] Conditions aux limites pour un système strictement hyperbolique fournies par le schéma de Godunov. RAIRO Modél. Math. Anal. Numér. 31 (1997) 359-380. | Zbl | mathdoc-id
and ,[9] Necessary condition of spectral stability for a stationary Lax-Wendroff shock profile. Preprint UMPA, ENS Lyon, 295 (2001).
,[10] Linear stability of shock profiles for systems of conservation laws with semi-linear relaxation. Phys. D 148 (2001) 289-316. | Zbl
,[11] Boundary layers for viscous perturbations of non-characteristic quasilinear hyperbolic problems. J. Differential Equations (1998). | Zbl | MR
and ,[12] Stability of one-dimensional boundary layers by using Green's functions. Comm. Pure Appl. Math. 54 (2001) 1343-1385. | Zbl
and ,[13] Discrete shocks. Comm. Pure Appl. Math. 27 (1974) 25-37. | Zbl
,[14] Stability of the travelling wave solution of the FitzHugh-Nagumo system. Trans. Amer. Math. Soc. 286 (1984) 431-469. | Zbl
,[15] Perturbation theory for linear operators. Springer-Verlag (1985). | Zbl
,[16] On the viscosity criterion for hyperbolic conservation laws, in Viscous profiles and numerical methods for shock waves (Raleigh, NC, 1990), pp. 105-114. SIAM, Philadelphia, PA (1991). | Zbl
,[17] Overcompressive shock waves, in Nonlinear evolution equations that change type. Springer-Verlag, New York, IMA Vol. Math. Appl. 27 (1990) 139-145. | Zbl
and ,[18] Continuum shock profiles for discrete conservation laws. I. Construction. Comm. Pure Appl. Math. 52 (1999) 85-127. | Zbl
and ,[19] Continuum shock profiles for discrete conservation laws. II. Stability. Comm. Pure Appl. Math. 52 (1999) 1047-1073. | Zbl
and ,[20] Discrete shock profiles for systems of conservation laws. Comm. Pure Appl. Math. 32 (1979) 445-482. | Zbl
and ,[21] Pointwise green's function bounds and stability of relaxation shocks. Indiana Univ. Math. J. 51 (2002) 773-904. | Zbl
and ,[22] Discrete shocks for difference approximations to systems of conservation laws. Adv. in Appl. Math. 5 (1984) 433-469. | Zbl
,[23] Transversality for undercompressive shocks in Riemann problems, in Viscous profiles and numerical methods for shock waves (Raleigh, NC, 1990), pp. 142-154. SIAM, Philadelphia, PA (1991). | Zbl
and ,[24] Remarks about the discrete profiles of shock waves. Mat. Contemp. 11 (1996) 153-170. Fourth Workshop on Partial Differential Equations, Part II (Rio de Janeiro, 1995). | Zbl
,[25] Discrete shock profiles and their stability, in Hyperbolic problems: theory, numerics, applications, Vol. II (Zürich, 1998), pp. 843-853. Birkhäuser, Basel (1999). | Zbl
,[26] Systems of conservation laws. 1. Cambridge University Press, Cambridge (1999). Hyperbolicity, entropies, shock waves. Translated from the 1996 French original by I.N. Sneddon. | Zbl | MR
,[27] Pointwise semigroup methods and stability of viscous shock waves. Indiana Univ. Math. J. 47 (1998) 741-871. | Zbl
and ,[28] Viscous and inviscid stability of multidimensional planar shock fronts. Indiana Univ. Math. J. 48 (1999) 937-992. | Zbl
and ,Cité par Sources :