Voir la notice de l'article provenant de la source Numdam
Semi-smooth Newton methods are analyzed for a class of variational inequalities in infinite dimensions. It is shown that they are equivalent to certain active set strategies. Global and local super-linear convergence are proved. To overcome the phenomenon of finite speed of propagation of discretized problems a penalty version is used as the basis for a continuation procedure to speed up convergence. The choice of the penalty parameter can be made on the basis of an estimate for the penalized solutions. Unilateral as well as bilateral problems are considered.
@article{M2AN_2003__37_1_41_0, author = {Ito, Kazufumi and Kunisch, Karl}, title = {Semi-smooth {Newton} methods for variational inequalities of the first kind}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {41--62}, publisher = {EDP-Sciences}, volume = {37}, number = {1}, year = {2003}, doi = {10.1051/m2an:2003021}, zbl = {1027.49007}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an:2003021/} }
TY - JOUR AU - Ito, Kazufumi AU - Kunisch, Karl TI - Semi-smooth Newton methods for variational inequalities of the first kind JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2003 SP - 41 EP - 62 VL - 37 IS - 1 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an:2003021/ DO - 10.1051/m2an:2003021 LA - en ID - M2AN_2003__37_1_41_0 ER -
%0 Journal Article %A Ito, Kazufumi %A Kunisch, Karl %T Semi-smooth Newton methods for variational inequalities of the first kind %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2003 %P 41-62 %V 37 %N 1 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an:2003021/ %R 10.1051/m2an:2003021 %G en %F M2AN_2003__37_1_41_0
Ito, Kazufumi; Kunisch, Karl. Semi-smooth Newton methods for variational inequalities of the first kind. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 37 (2003) no. 1, pp. 41-62. doi : 10.1051/m2an:2003021. http://geodesic.mathdoc.fr/articles/10.1051/m2an:2003021/
[1] Constrained Optimization and Lagrange Mulitpliers. Academic Press, New York (1982). | MR
,[2] A comparison of a Moreau-Yosida based active strategy and interior point methods for constrained optimal control problems. SIAM J. Optim. 11 (2000) 495-521. | Zbl
, , and ,[3] Primal-dual strategy for constrained optimal control problems. SIAM J. Control Optim. 37 (1999) 1176-1194. | Zbl
, and ,[4] Box constrained quadratic programming with proportioning and projections. SIAM J. Optim. 7 (1997) 871-887. | Zbl
,[5] Numerical Methods for Nonlinear Variational Problems. Springer Verlag, New York (1984). | Zbl | MR
,[6] Analyse Numerique des Inequations Variationnelles. Vol. 1, Dunod, Paris (1976). | Zbl
, and ,[7] The primal-dual active set strategy as semi-smooth Newton method. SIAM J. Optim. (to appear). | Zbl
, and ,[8] Multigrid algorithms for variational inequalities. SIAM J. Numer. Anal. 24 (1987) 1046-1065. | Zbl
,[9] Adaptive multigrid methods for obstacle problems. SIAM J. Numer. Anal. 31 (1994) 301-323. | Zbl
and ,[10] Augmented Lagrangian methods for nonsmooth convex optimization in Hilbert spaces. Nonlinear Anal. 41 (2000) 573-589. | Zbl
and ,[11] Optimal control of elliptic variational inequalities. Appl. Math. Optim. 41 (2000) 343-364. | Zbl
and ,[12] An Introduction to Variational Inequalities and Their Applications. Academic Press, New York (1980). | Zbl | MR
and ,[13] Elliptic Differential Equations and Obstacle Problems. Plenum Press, New York (1987). | Zbl
,[14] Semi-smooth Newton methods for operator equations in function space. SIAM J. Optim. (to appear). | Zbl
,Cité par Sources :