Voir la notice de l'article provenant de la source Numdam
We present here a discretization of a nonlinear oblique derivative boundary value problem for the heat equation in dimension two. This finite difference scheme takes advantages of the structure of the boundary condition, which can be reinterpreted as a Burgers equation in the space variables. This enables to obtain an energy estimate and to prove the convergence of the scheme. We also provide some numerical simulations of this problem and a numerical study of the stability of the scheme, which appears to be in good agreement with the theory.
@article{M2AN_2002__36_6_1111_0, author = {Mehats, Florian}, title = {Convergence of a numerical scheme for a nonlinear oblique derivative boundary value problem}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1111--1132}, publisher = {EDP-Sciences}, volume = {36}, number = {6}, year = {2002}, doi = {10.1051/m2an:2003008}, mrnumber = {1958661}, zbl = {1060.65100}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an:2003008/} }
TY - JOUR AU - Mehats, Florian TI - Convergence of a numerical scheme for a nonlinear oblique derivative boundary value problem JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2002 SP - 1111 EP - 1132 VL - 36 IS - 6 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an:2003008/ DO - 10.1051/m2an:2003008 LA - en ID - M2AN_2002__36_6_1111_0 ER -
%0 Journal Article %A Mehats, Florian %T Convergence of a numerical scheme for a nonlinear oblique derivative boundary value problem %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2002 %P 1111-1132 %V 36 %N 6 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an:2003008/ %R 10.1051/m2an:2003008 %G en %F M2AN_2002__36_6_1111_0
Mehats, Florian. Convergence of a numerical scheme for a nonlinear oblique derivative boundary value problem. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 36 (2002) no. 6, pp. 1111-1132. doi : 10.1051/m2an:2003008. http://geodesic.mathdoc.fr/articles/10.1051/m2an:2003008/
[1] A nonlinear oblique derivative boundary value problem for the heat equation: analogy with the porous medium equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 19 (2002) 41-80. | Zbl | mathdoc-id
and ,[2] Initial and nonlinear oblique boundary value problems for fully nonlinear parabolic equations. J. Partial Differential Equations Ser. A 1 (1988) 12-42. | Zbl
,[3] Hyperbolic systems of conservation laws. Mathématiques & Applications, Ellipse, Paris (1991). | Zbl | MR
and ,[4] Modélisation mathématique et numérique pour les sciences de l'ingénieur. Cours de l'École polytechnique, Département de Mathématiques Appliquées, 1996.
,[5] Numerical Methods for Conservation Laws. Lectures in Mathematics, Birkhäuser Verlag (1990). | Zbl | MR
,[6] Quelques méthodes de résolution des problèmes aux limites non linéaires. Études Mathématiques, Dunod, Gauthier-Villars (1969). | Zbl | MR
,[7] Problèmes aux limites non homogènes et applications. Vol. 1, Travaux et recherches Mathématiques, Dunod (1968). | Zbl | MR
and ,[8] Étude de problèmes aux limites en physique du transport des particules chargées. Thèse de doctorat (1997).
,[9] A nonlinear oblique derivative boundary value problem for the heat equation, Part 1 and Part 2. Ann. Inst. H. Poincaré Anal. Non Linéaire 16 (1999) 221-253 and 691-724. | Zbl | mathdoc-id
and ,[10] A Problem with an Oblique Derivative for a Quasilinear Parabolic Equation. J. Math. Sci. 77 (1995) 3212-3220. | Zbl
and ,Cité par Sources :