A mathematical and computational framework for reliable real-time solution of parametrized partial differential equations
ESAIM: Mathematical Modelling and Numerical Analysis , Special issue on Programming, Tome 36 (2002) no. 5, pp. 747-771

Voir la notice de l'article provenant de la source Numdam

We present in this article two components: these components can in fact serve various goals independently, though we consider them here as an ensemble. The first component is a technique for the rapid and reliable evaluation prediction of linear functional outputs of elliptic (and parabolic) partial differential equations with affine parameter dependence. The essential features are (i) (provably) rapidly convergent global reduced-basis approximations - Galerkin projection onto a space W N spanned by solutions of the governing partial differential equation at N selected points in parameter space; (ii) a posteriori error estimation - relaxations of the error-residual equation that provide inexpensive yet sharp and rigorous bounds for the error in the outputs of interest; and (iii) off-line/on-line computational procedures - methods which decouple the generation and projection stages of the approximation process. This component is ideally suited - considering the operation count of the online stage - for the repeated and rapid evaluation required in the context of parameter estimation, design, optimization, and real-time control. The second component is a framework for distributed simulations. This framework comprises a library providing the necessary abstractions/concepts for distributed simulations and a small set of tools - namely SimTeXand SimLaB- allowing an easy manipulation of those simulations. While the library is the backbone of the framework and is therefore general, the various interfaces answer specific needs. We shall describe both components and present how they interact.

DOI : 10.1051/m2an:2002035
Classification : 65N15, 65N30, 68U01, 68U20, 68M14, 68M15
Keywords: mathematical framework, reduced-basis methods, error bounds, computational framework, simulations repository, distributed and parallel computing, CORBA, C++
@article{M2AN_2002__36_5_747_0,
     author = {Prud'homme, Christophe and Rovas, Dimitrios V. and Veroy, Karen and Patera, Anthony T.},
     title = {A mathematical and computational framework for reliable real-time solution of parametrized partial differential equations},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {747--771},
     publisher = {EDP-Sciences},
     volume = {36},
     number = {5},
     year = {2002},
     doi = {10.1051/m2an:2002035},
     zbl = {1024.65104},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an:2002035/}
}
TY  - JOUR
AU  - Prud'homme, Christophe
AU  - Rovas, Dimitrios V.
AU  - Veroy, Karen
AU  - Patera, Anthony T.
TI  - A mathematical and computational framework for reliable real-time solution of parametrized partial differential equations
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2002
SP  - 747
EP  - 771
VL  - 36
IS  - 5
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an:2002035/
DO  - 10.1051/m2an:2002035
LA  - en
ID  - M2AN_2002__36_5_747_0
ER  - 
%0 Journal Article
%A Prud'homme, Christophe
%A Rovas, Dimitrios V.
%A Veroy, Karen
%A Patera, Anthony T.
%T A mathematical and computational framework for reliable real-time solution of parametrized partial differential equations
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2002
%P 747-771
%V 36
%N 5
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an:2002035/
%R 10.1051/m2an:2002035
%G en
%F M2AN_2002__36_5_747_0
Prud'homme, Christophe; Rovas, Dimitrios V.; Veroy, Karen; Patera, Anthony T. A mathematical and computational framework for reliable real-time solution of parametrized partial differential equations. ESAIM: Mathematical Modelling and Numerical Analysis , Special issue on Programming, Tome 36 (2002) no. 5, pp. 747-771. doi: 10.1051/m2an:2002035

Cité par Sources :