Voir la notice de l'article provenant de la source Numdam
In this work, we analyze hierarchic -finite element discretizations of the full, three-dimensional plate problem. Based on two-scale asymptotic expansion of the three-dimensional solution, we give specific mesh design principles for the -FEM which allow to resolve the three-dimensional boundary layer profiles at robust, exponential rate. We prove that, as the plate half-thickness tends to zero, the -discretization is consistent with the three-dimensional solution to any power of in the energy norm for the degree and with degrees of freedom.
@article{M2AN_2002__36_4_597_0, author = {Dauge, Monique and Schwab, Christoph}, title = {$hp${-FEM} for three-dimensional elastic plates}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {597--630}, publisher = {EDP-Sciences}, volume = {36}, number = {4}, year = {2002}, doi = {10.1051/m2an:2002027}, mrnumber = {1932306}, zbl = {1070.74046}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an:2002027/} }
TY - JOUR AU - Dauge, Monique AU - Schwab, Christoph TI - $hp$-FEM for three-dimensional elastic plates JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2002 SP - 597 EP - 630 VL - 36 IS - 4 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an:2002027/ DO - 10.1051/m2an:2002027 LA - en ID - M2AN_2002__36_4_597_0 ER -
%0 Journal Article %A Dauge, Monique %A Schwab, Christoph %T $hp$-FEM for three-dimensional elastic plates %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2002 %P 597-630 %V 36 %N 4 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an:2002027/ %R 10.1051/m2an:2002027 %G en %F M2AN_2002__36_4_597_0
Dauge, Monique; Schwab, Christoph. $hp$-FEM for three-dimensional elastic plates. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 36 (2002) no. 4, pp. 597-630. doi: 10.1051/m2an:2002027
Cité par Sources :