Voir la notice de l'article provenant de la source Numdam
The stability of flat interfaces with respect to a spatial semidiscretization of a solidification model is analyzed. The considered model is the quasi-static approximation of the Stefan problem with dynamical Gibbs-Thomson law. The stability analysis bases on an argument developed by Mullins and Sekerka for the undiscretized case. The obtained stability properties differ from those with respect to the quasi-static model for certain parameter values and relatively coarse meshes. Moreover, consequences on discretization issues are discussed.
@article{M2AN_2002__36_4_573_0, author = {Veeser, Andreas}, title = {Stability of flat interfaces during semidiscrete solidification}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {573--595}, publisher = {EDP-Sciences}, volume = {36}, number = {4}, year = {2002}, doi = {10.1051/m2an:2002026}, mrnumber = {1932305}, zbl = {1137.65404}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an:2002026/} }
TY - JOUR AU - Veeser, Andreas TI - Stability of flat interfaces during semidiscrete solidification JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2002 SP - 573 EP - 595 VL - 36 IS - 4 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an:2002026/ DO - 10.1051/m2an:2002026 LA - en ID - M2AN_2002__36_4_573_0 ER -
%0 Journal Article %A Veeser, Andreas %T Stability of flat interfaces during semidiscrete solidification %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2002 %P 573-595 %V 36 %N 4 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an:2002026/ %R 10.1051/m2an:2002026 %G en %F M2AN_2002__36_4_573_0
Veeser, Andreas. Stability of flat interfaces during semidiscrete solidification. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 36 (2002) no. 4, pp. 573-595. doi: 10.1051/m2an:2002026
Cité par Sources :