Two-scale FEM for homogenization problems
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 36 (2002) no. 4, pp. 537-572.

Voir la notice de l'article provenant de la source Numdam

The convergence of a two-scale FEM for elliptic problems in divergence form with coefficients and geometries oscillating at length scale ε1 is analyzed. Full elliptic regularity independent of ε is shown when the solution is viewed as mapping from the slow into the fast scale. Two-scale FE spaces which are able to resolve the ε scale of the solution with work independent of ε and without analytical homogenization are introduced. Robust in ε error estimates for the two-scale FE spaces are proved. Numerical experiments confirm the theoretical analysis.

DOI : 10.1051/m2an:2002025
Classification : 65N30
Keywords: homogenization, two-scale regularity, finite element method (FEM), two-scale FEM
@article{M2AN_2002__36_4_537_0,
     author = {Matache, Ana-Maria and Schwab, Christoph},
     title = {Two-scale {FEM} for homogenization problems},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {537--572},
     publisher = {EDP-Sciences},
     volume = {36},
     number = {4},
     year = {2002},
     doi = {10.1051/m2an:2002025},
     mrnumber = {1932304},
     zbl = {1070.65572},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an:2002025/}
}
TY  - JOUR
AU  - Matache, Ana-Maria
AU  - Schwab, Christoph
TI  - Two-scale FEM for homogenization problems
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2002
SP  - 537
EP  - 572
VL  - 36
IS  - 4
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an:2002025/
DO  - 10.1051/m2an:2002025
LA  - en
ID  - M2AN_2002__36_4_537_0
ER  - 
%0 Journal Article
%A Matache, Ana-Maria
%A Schwab, Christoph
%T Two-scale FEM for homogenization problems
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2002
%P 537-572
%V 36
%N 4
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an:2002025/
%R 10.1051/m2an:2002025
%G en
%F M2AN_2002__36_4_537_0
Matache, Ana-Maria; Schwab, Christoph. Two-scale FEM for homogenization problems. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 36 (2002) no. 4, pp. 537-572. doi : 10.1051/m2an:2002025. http://geodesic.mathdoc.fr/articles/10.1051/m2an:2002025/

[1] I. Babuška and A.K. Aziz, Survey lectures on the mathematical foundation of the finite element method, in The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, A.K. Aziz Ed., Academic Press, New York (1973) 5-359. | Zbl

[2] A. Bensoussan, J.L. Lions and G. Papanicolau, Asymptotic Analysis for Periodic Structures. North Holland, Amsterdam (1978). | Zbl | MR

[3] D. Cioranescu and J. Saint Jean Paulin, Homogenization of Reticulated Structures. Springer-Verlag, New York (1999). | Zbl | MR

[4] T.Y. Hou and X.H. Wu, A Multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134 (1997) 169-189. | Zbl

[5] T.Y. Hou, X.H. Wu and Z. Cai, Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients. Math. Comp. 68 (1999) 913-943. | Zbl

[6] A.-M. Matache, Spectral- and p-Finite Elements for problems with microstructure, Ph.D. thesis, ETH Zürich (2000).

[7] A.-M. Matache, I. Babuška and C. Schwab, Generalized p-FEM in Homogenization. Numer. Math. 86 (2000) 319-375. | Zbl

[8] A.-M. Matache and M.J. Melenk, Two-scale regularity for homogenization problems with non-smooth fine-scale geometries, submitted. | Zbl

[9] A.-M. Matache and C. Schwab, Finite dimensional approximations for elliptic problems with rapidly oscillating coefficients, in Multiscale Problems in Science and Technology, N. Antonić, C.J. van Duijn, W. Jäger and A. Mikelić Eds., Springer-Verlag (2002) 203-242. | Zbl

[10] R.C. Morgan and I. Babuška, An approach for constructing families of homogenized solutions for periodic media, I: An integral representation and its consequences, II: Properties of the kernel. SIAM J. Math. Anal. 22 (1991) 1-33. | Zbl

[11] C. Schwab, p- and hp- Finite Element Methods. Oxford Science Publications (1998). | Zbl | MR

[12] C. Schwab and A.-M. Matache, High order generalized FEM for lattice materials, in Proc. of the 3rd European Conference on Numerical Mathematics and Advanced Applications, Finland, 1999, P. Neittaanmäki, T. Tiihonen and P. Tarvainen Eds., World Scientific, Singapore (2000). | Zbl | MR

[13] B. Szabó and I. Babuška, Finite Element Analysis1991). | Zbl | MR

[14] O.A. Oleinik, A.S. Shamaev and G.A. Yosifian, Mathematical Problems in Elasticity and Homogenization. North-Holland (1992). | Zbl | MR

Cité par Sources :