Voir la notice de l'article provenant de la source Numdam
Let be a function on a real Hilbert space and the manifold defined by Graph . We study the motion of a material point with unit mass, subjected to stay on and which moves under the action of the gravity force (characterized by ), the reaction force and the friction force ( is the friction parameter). For any initial conditions at time , we prove the existence of a trajectory defined on . We are then interested in the asymptotic behaviour of the trajectories when . More precisely, we prove the weak convergence of the trajectories when is convex. When admits a strong minimum, we show moreover that the mechanical energy exponentially decreases to its minimum.
@article{M2AN_2002__36_3_505_0, author = {Cabot, Alexandre}, title = {Motion with friction of a heavy particle on a manifold. {Applications} to optimization}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {505--516}, publisher = {EDP-Sciences}, volume = {36}, number = {3}, year = {2002}, doi = {10.1051/m2an:2002023}, mrnumber = {1918942}, zbl = {1032.34059}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an:2002023/} }
TY - JOUR AU - Cabot, Alexandre TI - Motion with friction of a heavy particle on a manifold. Applications to optimization JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2002 SP - 505 EP - 516 VL - 36 IS - 3 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an:2002023/ DO - 10.1051/m2an:2002023 LA - en ID - M2AN_2002__36_3_505_0 ER -
%0 Journal Article %A Cabot, Alexandre %T Motion with friction of a heavy particle on a manifold. Applications to optimization %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2002 %P 505-516 %V 36 %N 3 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an:2002023/ %R 10.1051/m2an:2002023 %G en %F M2AN_2002__36_3_505_0
Cabot, Alexandre. Motion with friction of a heavy particle on a manifold. Applications to optimization. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 36 (2002) no. 3, pp. 505-516. doi: 10.1051/m2an:2002023
Cité par Sources :