Motion with friction of a heavy particle on a manifold. Applications to optimization
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 36 (2002) no. 3, pp. 505-516
Cet article a éte moissonné depuis la source Numdam
Let be a function on a real Hilbert space and the manifold defined by Graph . We study the motion of a material point with unit mass, subjected to stay on and which moves under the action of the gravity force (characterized by ), the reaction force and the friction force ( is the friction parameter). For any initial conditions at time , we prove the existence of a trajectory defined on . We are then interested in the asymptotic behaviour of the trajectories when . More precisely, we prove the weak convergence of the trajectories when is convex. When admits a strong minimum, we show moreover that the mechanical energy exponentially decreases to its minimum.
DOI :
10.1051/m2an:2002023
Classification :
34A12, 34G20, 37N40, 70Fxx
Keywords: mechanics of particles, dissipative dynamical system, optimization, convex minimization, asymptotic behaviour, gradient system, heavy ball with friction
Keywords: mechanics of particles, dissipative dynamical system, optimization, convex minimization, asymptotic behaviour, gradient system, heavy ball with friction
@article{M2AN_2002__36_3_505_0,
author = {Cabot, Alexandre},
title = {Motion with friction of a heavy particle on a manifold. {Applications} to optimization},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
pages = {505--516},
year = {2002},
publisher = {EDP-Sciences},
volume = {36},
number = {3},
doi = {10.1051/m2an:2002023},
mrnumber = {1918942},
zbl = {1032.34059},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an:2002023/}
}
TY - JOUR AU - Cabot, Alexandre TI - Motion with friction of a heavy particle on a manifold. Applications to optimization JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2002 SP - 505 EP - 516 VL - 36 IS - 3 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an:2002023/ DO - 10.1051/m2an:2002023 LA - en ID - M2AN_2002__36_3_505_0 ER -
%0 Journal Article %A Cabot, Alexandre %T Motion with friction of a heavy particle on a manifold. Applications to optimization %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2002 %P 505-516 %V 36 %N 3 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an:2002023/ %R 10.1051/m2an:2002023 %G en %F M2AN_2002__36_3_505_0
Cabot, Alexandre. Motion with friction of a heavy particle on a manifold. Applications to optimization. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 36 (2002) no. 3, pp. 505-516. doi: 10.1051/m2an:2002023
Cité par Sources :