Motion with friction of a heavy particle on a manifold. Applications to optimization
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 36 (2002) no. 3, pp. 505-516

Voir la notice de l'article provenant de la source Numdam

Let Φ:H be a 𝒞 2 function on a real Hilbert space and ΣH× the manifold defined by Σ:= Graph (Φ). We study the motion of a material point with unit mass, subjected to stay on Σ and which moves under the action of the gravity force (characterized by g>0), the reaction force and the friction force (γ>0 is the friction parameter). For any initial conditions at time t=0, we prove the existence of a trajectory x(.) defined on + . We are then interested in the asymptotic behaviour of the trajectories when t+. More precisely, we prove the weak convergence of the trajectories when Φ is convex. When Φ admits a strong minimum, we show moreover that the mechanical energy exponentially decreases to its minimum.

DOI : 10.1051/m2an:2002023
Classification : 34A12, 34G20, 37N40, 70Fxx
Keywords: mechanics of particles, dissipative dynamical system, optimization, convex minimization, asymptotic behaviour, gradient system, heavy ball with friction
@article{M2AN_2002__36_3_505_0,
     author = {Cabot, Alexandre},
     title = {Motion with friction of a heavy particle on a manifold. {Applications} to optimization},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {505--516},
     publisher = {EDP-Sciences},
     volume = {36},
     number = {3},
     year = {2002},
     doi = {10.1051/m2an:2002023},
     mrnumber = {1918942},
     zbl = {1032.34059},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an:2002023/}
}
TY  - JOUR
AU  - Cabot, Alexandre
TI  - Motion with friction of a heavy particle on a manifold. Applications to optimization
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2002
SP  - 505
EP  - 516
VL  - 36
IS  - 3
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an:2002023/
DO  - 10.1051/m2an:2002023
LA  - en
ID  - M2AN_2002__36_3_505_0
ER  - 
%0 Journal Article
%A Cabot, Alexandre
%T Motion with friction of a heavy particle on a manifold. Applications to optimization
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2002
%P 505-516
%V 36
%N 3
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an:2002023/
%R 10.1051/m2an:2002023
%G en
%F M2AN_2002__36_3_505_0
Cabot, Alexandre. Motion with friction of a heavy particle on a manifold. Applications to optimization. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 36 (2002) no. 3, pp. 505-516. doi: 10.1051/m2an:2002023

Cité par Sources :