Voir la notice de l'article provenant de la source Numdam
We propose a variational analysis for a Black and Scholes equation with stochastic volatility. This equation gives the price of a European option as a function of the time, of the price of the underlying asset and of the volatility when the volatility is a function of a mean reverting Orstein-Uhlenbeck process, possibly correlated with the underlying asset. The variational analysis involves weighted Sobolev spaces. It enables to prove qualitative properties of the solution, namely a maximum principle and additional regularity properties. Finally, we make numerical simulations of the solution, by finite element and finite difference methods.
@article{M2AN_2002__36_3_373_0, author = {Achdou, Yves and Tchou, Nicoletta}, title = {Variational analysis for the {Black} and {Scholes} equation with stochastic volatility}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {373--395}, publisher = {EDP-Sciences}, volume = {36}, number = {3}, year = {2002}, doi = {10.1051/m2an:2002018}, mrnumber = {1918937}, zbl = {1137.91421}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an:2002018/} }
TY - JOUR AU - Achdou, Yves AU - Tchou, Nicoletta TI - Variational analysis for the Black and Scholes equation with stochastic volatility JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2002 SP - 373 EP - 395 VL - 36 IS - 3 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an:2002018/ DO - 10.1051/m2an:2002018 LA - en ID - M2AN_2002__36_3_373_0 ER -
%0 Journal Article %A Achdou, Yves %A Tchou, Nicoletta %T Variational analysis for the Black and Scholes equation with stochastic volatility %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2002 %P 373-395 %V 36 %N 3 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an:2002018/ %R 10.1051/m2an:2002018 %G en %F M2AN_2002__36_3_373_0
Achdou, Yves; Tchou, Nicoletta. Variational analysis for the Black and Scholes equation with stochastic volatility. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 36 (2002) no. 3, pp. 373-395. doi: 10.1051/m2an:2002018
Cité par Sources :