Voir la notice de l'article provenant de la source Numdam
In this paper we consider the Maxwell resolvent operator and its finite element approximation. In this framework it is natural the use of the edge element spaces and to impose the divergence constraint in a weak sense with the introduction of a Lagrange multiplier, following an idea by Kikuchi [14]. We shall review some of the known properties for edge element approximations and prove some new result. In particular we shall prove a uniform convergence in the norm for the sequence of discrete operators. These results, together with a general theory introduced by Brezzi, Rappaz and Raviart [8], allow an immediate proof of convergence for the finite element approximation of the time-harmonic Maxwell system.
@article{M2AN_2002__36_2_293_0, author = {Boffi, Daniele and Gastaldi, Lucia}, title = {Edge finite elements for the approximation of {Maxwell} resolvent operator}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {293--305}, publisher = {EDP-Sciences}, volume = {36}, number = {2}, year = {2002}, doi = {10.1051/m2an:2002013}, mrnumber = {1906819}, zbl = {1042.65087}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an:2002013/} }
TY - JOUR AU - Boffi, Daniele AU - Gastaldi, Lucia TI - Edge finite elements for the approximation of Maxwell resolvent operator JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2002 SP - 293 EP - 305 VL - 36 IS - 2 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an:2002013/ DO - 10.1051/m2an:2002013 LA - en ID - M2AN_2002__36_2_293_0 ER -
%0 Journal Article %A Boffi, Daniele %A Gastaldi, Lucia %T Edge finite elements for the approximation of Maxwell resolvent operator %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2002 %P 293-305 %V 36 %N 2 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an:2002013/ %R 10.1051/m2an:2002013 %G en %F M2AN_2002__36_2_293_0
Boffi, Daniele; Gastaldi, Lucia. Edge finite elements for the approximation of Maxwell resolvent operator. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 36 (2002) no. 2, pp. 293-305. doi : 10.1051/m2an:2002013. http://geodesic.mathdoc.fr/articles/10.1051/m2an:2002013/
[1] Vector potential in three-dimensional nonsmooth domains. Math Methods Appl. Sci. 21 (1998) 823-864. | Zbl
, , and ,[2] Finite element vibration analysis of fluid-solid systems without spurious modes. SIAM J. Numer. Anal. 32 (1995) 1280-1295. | Zbl
, , , and ,[3] Fortin operator and discrete compactness for edge elements. Numer. Math. 87 (2000) 229-246. | Zbl
,[4] A note on the de Rham complex and a discrete compactness property. Appl. Math. Lett. 14 (2001) 33-38. | Zbl
,[5] On the problem of spurious eigenvalues in the approximation of linear elliptic problems in mixed form. Math. Comp. 69 (2000) 121-140. | Zbl
, and ,[6] Computational models of electromagnetic resonators: analysis of edge element approximation. SIAM J. Numer. Anal. 36 (1998) 1264-1290. | Zbl
, , and ,[7] Mixed and hybrid finite element methods. Springer-Verlag, New York (1991). | Zbl | MR
and ,[8] Finite dimensional approximation of nonlinear problems. Part i: Branches of nonsingular solutions. Numer. Math. 36 (1980) 1-25. | Zbl
, and ,[9] On the convergence of Galerkin finite element approximations of electromagnetic eigenproblems. SIAM J. Numer. Anal. 38 (2000) 580-607. | Zbl
, and ,[10] Zbl
, , and , de Rham diagram for finite element spaces. Comput. Math. Appl. 39 (2000) 29-38. |[11] Modeling of electromagnetic absorption/scattering problems using -adaptive finite elements. Comput. Methods Appl. Mech. Engrg. 152 (1998) 103-124. Symposium on Advances in Computational Mechanics, Vol. 5 (Austin, TX, 1997). | Zbl
and ,[12] On spectral approximation. I. The problem of convergence. RAIRO Anal. Numér. 12 (1978) 97-112. | Zbl | mathdoc-id
, and ,[13] P Fernandes and G. Gilardi, Magnetostatic and electrostatic problems in inhomogeneous anisotropic media with irregular boundary and mixed boundary conditions. Math. Models Methods Appl. Sci. 7 (1997) 957-991. | Zbl
[14] Mixed and penalty formulations for finite element analysis of an eigenvalue problem in electromagnetism. In Proceedings of the first world congress on computational mechanics (Austin, Tex., 1986), Vol. 64, pages 509-521, 1987. | Zbl
,[15] On a discrete compactness property for the Nédélec finite elements. J. Fac. Sci., Univ. Tokyo, Sect. I A 36 (1989) 479-490. | Zbl
,[16] A finite element method for approximating the time-harmonic Maxwell equations. Numer. Math. 63 (1992) 243-261. | Zbl
,[17] Discrete compactness and the approximation of Maxwell’s equations in . Math. Comp. 70 (2001) 507-523. | Zbl
and ,[18] Mixed finite elements in . Numer. Math. 35 (1980) 315-341. | Zbl
,[19] A new family of mixed finite elements in . Numer. Math. 50 (1986) 57-81. | Zbl
,[20] Commuting quasi-interpolation operators for mixed finite elements. Preprint ISC-01-10-MATH, Texas A&M University, 2001.
,[21] -adaptive finite elements in electromagnetics. Comput. Methods Appl. Mech. Engrg. 169 (1999) 331-344. | Zbl
and ,Cité par Sources :