Voir la notice de l'article provenant de la source Numdam
In this paper we consider the Maxwell resolvent operator and its finite element approximation. In this framework it is natural the use of the edge element spaces and to impose the divergence constraint in a weak sense with the introduction of a Lagrange multiplier, following an idea by Kikuchi [14]. We shall review some of the known properties for edge element approximations and prove some new result. In particular we shall prove a uniform convergence in the norm for the sequence of discrete operators. These results, together with a general theory introduced by Brezzi, Rappaz and Raviart [8], allow an immediate proof of convergence for the finite element approximation of the time-harmonic Maxwell system.
@article{M2AN_2002__36_2_293_0, author = {Boffi, Daniele and Gastaldi, Lucia}, title = {Edge finite elements for the approximation of {Maxwell} resolvent operator}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {293--305}, publisher = {EDP-Sciences}, volume = {36}, number = {2}, year = {2002}, doi = {10.1051/m2an:2002013}, mrnumber = {1906819}, zbl = {1042.65087}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an:2002013/} }
TY - JOUR AU - Boffi, Daniele AU - Gastaldi, Lucia TI - Edge finite elements for the approximation of Maxwell resolvent operator JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2002 SP - 293 EP - 305 VL - 36 IS - 2 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an:2002013/ DO - 10.1051/m2an:2002013 LA - en ID - M2AN_2002__36_2_293_0 ER -
%0 Journal Article %A Boffi, Daniele %A Gastaldi, Lucia %T Edge finite elements for the approximation of Maxwell resolvent operator %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2002 %P 293-305 %V 36 %N 2 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an:2002013/ %R 10.1051/m2an:2002013 %G en %F M2AN_2002__36_2_293_0
Boffi, Daniele; Gastaldi, Lucia. Edge finite elements for the approximation of Maxwell resolvent operator. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 36 (2002) no. 2, pp. 293-305. doi: 10.1051/m2an:2002013
Cité par Sources :