Simultaneous vs. non-simultaneous blow-up in numerical approximations of a parabolic system with non-linear boundary conditions
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 36 (2002) no. 1, pp. 55-68

Voir la notice de l'article provenant de la source Numdam

We study the asymptotic behavior of a semi-discrete numerical approximation for a pair of heat equations u t =Δu, v t =Δv in Ω×(0,T); fully coupled by the boundary conditions u η=u p 11 v p 12 , v η=u p 21 v p 22 on Ω×(0,T), where Ω is a bounded smooth domain in d . We focus in the existence or not of non-simultaneous blow-up for a semi-discrete approximation (U,V). We prove that if U blows up in finite time then V can fail to blow up if and only if p 11 >1 and p 21 <2(p 11 -1), which is the same condition as the one for non-simultaneous blow-up in the continuous problem. Moreover, we find that if the continuous problem has non-simultaneous blow-up then the same is true for the discrete one. We also prove some results about the convergence of the scheme and the convergence of the blow-up times.

DOI : 10.1051/m2an:2002003
Classification : 65M60, 65M20, 35K60, 35B40
Keywords: blow-up, parabolic equations, semi-discretization in space, asymptotic behavior, non-linear boundary conditions
@article{M2AN_2002__36_1_55_0,
     author = {Acosta, Gabriel and Bonder, Juli\'an Fern\'andez and Groisman, Pablo and Rossi, Julio Daniel},
     title = {Simultaneous vs. non-simultaneous blow-up in numerical approximations of a parabolic system with non-linear boundary conditions},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {55--68},
     publisher = {EDP-Sciences},
     volume = {36},
     number = {1},
     year = {2002},
     doi = {10.1051/m2an:2002003},
     mrnumber = {1916292},
     zbl = {1003.65097},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an:2002003/}
}
TY  - JOUR
AU  - Acosta, Gabriel
AU  - Bonder, Julián Fernández
AU  - Groisman, Pablo
AU  - Rossi, Julio Daniel
TI  - Simultaneous vs. non-simultaneous blow-up in numerical approximations of a parabolic system with non-linear boundary conditions
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2002
SP  - 55
EP  - 68
VL  - 36
IS  - 1
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an:2002003/
DO  - 10.1051/m2an:2002003
LA  - en
ID  - M2AN_2002__36_1_55_0
ER  - 
%0 Journal Article
%A Acosta, Gabriel
%A Bonder, Julián Fernández
%A Groisman, Pablo
%A Rossi, Julio Daniel
%T Simultaneous vs. non-simultaneous blow-up in numerical approximations of a parabolic system with non-linear boundary conditions
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2002
%P 55-68
%V 36
%N 1
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an:2002003/
%R 10.1051/m2an:2002003
%G en
%F M2AN_2002__36_1_55_0
Acosta, Gabriel; Bonder, Julián Fernández; Groisman, Pablo; Rossi, Julio Daniel. Simultaneous vs. non-simultaneous blow-up in numerical approximations of a parabolic system with non-linear boundary conditions. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 36 (2002) no. 1, pp. 55-68. doi: 10.1051/m2an:2002003

Cité par Sources :