Stability of the ale space-time discontinuous Galerkin method for nonlinear convection-diffusion problems in time-dependent domains
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 6, pp. 2327-2356

Voir la notice de l'article provenant de la source Numdam

The paper is concerned with the analysis of the space-time discontinuous Galerkin method (STDGM) applied to the numerical solution of nonstationary nonlinear convection-diffusion initial- boundary value problem in a time-dependent domain. The problem is reformulated using the arbitrary Lagrangian-Eulerian (ALE) method, which replaces the classical partial time derivative by the so-called ALE derivative and an additional convective term. The problem is discretized with the use of the ALE- space time discontinuous Galerkin method (ALE-STDGM). In the formulation of the numerical scheme we use the nonsymmetric, symmetric and incomplete versions of the space discretization of diffusion terms and interior and boundary penalty. The nonlinear convection terms are discretized with the aid of a numerical flux. The main attention is paid to the proof of the unconditional stability of the method. An important step is the generalization of a discrete characteristic function associated with the approximate solution and the derivation of its properties.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2018062
Classification : 65M60, 65M99
Keywords: nonlinear convection-diffusion equation, time-dependent domain, ALE method, space-time discontinuous Galerkin method, discrete characteristic function, unconditional stability in space and time

Balázsová, Monika 1 ; Feistauer, Miloslav 1 ; Vlasák, Miloslav 1

1
@article{M2AN_2018__52_6_2327_0,
     author = {Bal\'azsov\'a, Monika and Feistauer, Miloslav and Vlas\'ak, Miloslav},
     title = {Stability of the ale space-time discontinuous {Galerkin} method for nonlinear convection-diffusion problems in time-dependent domains},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {2327--2356},
     publisher = {EDP-Sciences},
     volume = {52},
     number = {6},
     year = {2018},
     doi = {10.1051/m2an/2018062},
     zbl = {1417.65166},
     mrnumber = {3905191},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2018062/}
}
TY  - JOUR
AU  - Balázsová, Monika
AU  - Feistauer, Miloslav
AU  - Vlasák, Miloslav
TI  - Stability of the ale space-time discontinuous Galerkin method for nonlinear convection-diffusion problems in time-dependent domains
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2018
SP  - 2327
EP  - 2356
VL  - 52
IS  - 6
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2018062/
DO  - 10.1051/m2an/2018062
LA  - en
ID  - M2AN_2018__52_6_2327_0
ER  - 
%0 Journal Article
%A Balázsová, Monika
%A Feistauer, Miloslav
%A Vlasák, Miloslav
%T Stability of the ale space-time discontinuous Galerkin method for nonlinear convection-diffusion problems in time-dependent domains
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2018
%P 2327-2356
%V 52
%N 6
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2018062/
%R 10.1051/m2an/2018062
%G en
%F M2AN_2018__52_6_2327_0
Balázsová, Monika; Feistauer, Miloslav; Vlasák, Miloslav. Stability of the ale space-time discontinuous Galerkin method for nonlinear convection-diffusion problems in time-dependent domains. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 6, pp. 2327-2356. doi: 10.1051/m2an/2018062

Cité par Sources :