Optimally convergent hybridizable discontinuous Galerkin method for fifth-order Korteweg-de Vries type equations
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 6, pp. 2283-2306

Voir la notice de l'article provenant de la source Numdam

We develop and analyze the first hybridizable discontinuous Galerkin (HDG) method for solving fifth-order Korteweg-de Vries (KdV) type equations. We show that the semi-discrete scheme is stable with proper choices of the stabilization functions in the numerical traces. For the linearized fifth-order equations, we prove that the approximations to the exact solution and its four spatial derivatives as well as its time derivative all have optimal convergence rates. The numerical experiments, demonstrating optimal convergence rates for both the linear and nonlinear equations, validate our theoretical findings.

DOI : 10.1051/m2an/2018037
Classification : 65M60, 65N30
Keywords: Hybridizable discontinuous Galerkin method, fifth-order, Korteweg-de Vries equation, DG

Chen, Yanlai 1 ; Dong, Bo 1 ; Jiang, Jiahua 1

1
@article{M2AN_2018__52_6_2283_0,
     author = {Chen, Yanlai and Dong, Bo and Jiang, Jiahua},
     title = {Optimally convergent hybridizable discontinuous {Galerkin} method for fifth-order {Korteweg-de} {Vries} type equations},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {2283--2306},
     publisher = {EDP-Sciences},
     volume = {52},
     number = {6},
     year = {2018},
     doi = {10.1051/m2an/2018037},
     zbl = {1417.65168},
     mrnumber = {3905190},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2018037/}
}
TY  - JOUR
AU  - Chen, Yanlai
AU  - Dong, Bo
AU  - Jiang, Jiahua
TI  - Optimally convergent hybridizable discontinuous Galerkin method for fifth-order Korteweg-de Vries type equations
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2018
SP  - 2283
EP  - 2306
VL  - 52
IS  - 6
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2018037/
DO  - 10.1051/m2an/2018037
LA  - en
ID  - M2AN_2018__52_6_2283_0
ER  - 
%0 Journal Article
%A Chen, Yanlai
%A Dong, Bo
%A Jiang, Jiahua
%T Optimally convergent hybridizable discontinuous Galerkin method for fifth-order Korteweg-de Vries type equations
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2018
%P 2283-2306
%V 52
%N 6
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2018037/
%R 10.1051/m2an/2018037
%G en
%F M2AN_2018__52_6_2283_0
Chen, Yanlai; Dong, Bo; Jiang, Jiahua. Optimally convergent hybridizable discontinuous Galerkin method for fifth-order Korteweg-de Vries type equations. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 6, pp. 2283-2306. doi: 10.1051/m2an/2018037

Cité par Sources :