Tensor-based multiscale method for diffusion problems in quasi-periodic heterogeneous media
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 3, pp. 869-891

Voir la notice de l'article provenant de la source Numdam

This paper proposes to address the issue of complexity reduction for the numerical simulation of multiscale media in a quasi-periodic setting. We consider a stationary elliptic diffusion equation defined on a domain D such that D ¯ is the union of cells { D ¯ i } i I and we introduce a two-scale representation by identifying any function v ( x ) defined on D with a bi-variate function v ( i , y ) , where i I relates to the index of the cell containing the point x and y Y relates to a local coordinate in a reference cell Y . We introduce a weak formulation of the problem in a broken Sobolev space V ( D ) using a discontinuous Galerkin framework. The problem is then interpreted as a tensor-structured equation by identifying V ( D ) with a tensor product space 1 V ( Y ) of functions defined over the product set I × Y . Tensor numerical methods are then used in order to exploit approximability properties of quasi-periodic solutions by low-rank tensors.

DOI : 10.1051/m2an/2018022
Classification : 15A69, 35B15, 65N30
Keywords: Quasi-periodicity, tensor approximation, discontinuous Galerkin, multiscale, heterogeneous diffusion

Ayoul-Guilmard, Quentin 1 ; Nouy, Anthony 1 ; Binetruy, Christophe 1

1
@article{M2AN_2018__52_3_869_0,
     author = {Ayoul-Guilmard, Quentin and Nouy, Anthony and Binetruy, Christophe},
     title = {Tensor-based multiscale method for diffusion problems in quasi-periodic heterogeneous media},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {869--891},
     publisher = {EDP-Sciences},
     volume = {52},
     number = {3},
     year = {2018},
     doi = {10.1051/m2an/2018022},
     mrnumber = {3865552},
     zbl = {1407.65279},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2018022/}
}
TY  - JOUR
AU  - Ayoul-Guilmard, Quentin
AU  - Nouy, Anthony
AU  - Binetruy, Christophe
TI  - Tensor-based multiscale method for diffusion problems in quasi-periodic heterogeneous media
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2018
SP  - 869
EP  - 891
VL  - 52
IS  - 3
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2018022/
DO  - 10.1051/m2an/2018022
LA  - en
ID  - M2AN_2018__52_3_869_0
ER  - 
%0 Journal Article
%A Ayoul-Guilmard, Quentin
%A Nouy, Anthony
%A Binetruy, Christophe
%T Tensor-based multiscale method for diffusion problems in quasi-periodic heterogeneous media
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2018
%P 869-891
%V 52
%N 3
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2018022/
%R 10.1051/m2an/2018022
%G en
%F M2AN_2018__52_3_869_0
Ayoul-Guilmard, Quentin; Nouy, Anthony; Binetruy, Christophe. Tensor-based multiscale method for diffusion problems in quasi-periodic heterogeneous media. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 3, pp. 869-891. doi: 10.1051/m2an/2018022

Cité par Sources :