Voir la notice de l'article provenant de la source Numdam
A multiscale time integrator Fourier pseudospectral (MTI-FP) method is proposed and rigorously analyzed for the nonlinear Dirac equation (NLDE), which involves a dimensionless parameter inversely proportional to the speed of light. The solution to the NLDE propagates waves with wavelength and in time and space, respectively. In the nonrelativistic regime, i.e., the rapid temporal oscillation causes significantly numerical burdens, making it quite challenging for designing and analyzing numerical methods with uniform error bounds in . The key idea for designing the MTI-FP method is based on adopting a proper multiscale decomposition of the solution to the NLDE and applying the exponential wave integrator with appropriate numerical quadratures. Two independent error estimates are established for the proposed MTI-FP method as and , where is the mesh size, is the time step and depends on the regularity of the solution. These two error bounds immediately suggest that the MTI-FP method converges uniformly and optimally in space with exponential convergence rate if the solution is smooth, and uniformly in time with linear convergence rate at for all and optimally with quadratic convergence rate at in the regimes when either in the regimes when either or . Numerical results are reported to demonstrate that our error estimates are optimal and sharp.
Cai, Yongyong 1 ; Wang, Yan 1
@article{M2AN_2018__52_2_543_0, author = {Cai, Yongyong and Wang, Yan}, title = {A uniformly accurate {(UA)} multiscale time integrator pseudospectral method for the nonlinear {Dirac} equation in the nonrelativistic limit regime}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {543--566}, publisher = {EDP-Sciences}, volume = {52}, number = {2}, year = {2018}, doi = {10.1051/m2an/2018015}, zbl = {1404.35377}, mrnumber = {3834435}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2018015/} }
TY - JOUR AU - Cai, Yongyong AU - Wang, Yan TI - A uniformly accurate (UA) multiscale time integrator pseudospectral method for the nonlinear Dirac equation in the nonrelativistic limit regime JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2018 SP - 543 EP - 566 VL - 52 IS - 2 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2018015/ DO - 10.1051/m2an/2018015 LA - en ID - M2AN_2018__52_2_543_0 ER -
%0 Journal Article %A Cai, Yongyong %A Wang, Yan %T A uniformly accurate (UA) multiscale time integrator pseudospectral method for the nonlinear Dirac equation in the nonrelativistic limit regime %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2018 %P 543-566 %V 52 %N 2 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2018015/ %R 10.1051/m2an/2018015 %G en %F M2AN_2018__52_2_543_0
Cai, Yongyong; Wang, Yan. A uniformly accurate (UA) multiscale time integrator pseudospectral method for the nonlinear Dirac equation in the nonrelativistic limit regime. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 2, pp. 543-566. doi: 10.1051/m2an/2018015
Cité par Sources :