An a posteriori error analysis for an optimal control problem with point sources
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 5, pp. 1617-1650

Voir la notice de l'article provenant de la source Numdam

We propose and analyze a reliable and efficient a posteriori error estimator for a control-constrained linear-quadratic optimal control problem involving Dirac measures; the control variable corresponds to the amplitude of forces modeled as point sources. The proposed a posteriori error estimator is defined as the sum of two contributions, which are associated with the state and adjoint equations. The estimator associated with the state equation is based on Muckenhoupt weighted Sobolev spaces, while the one associated with the adjoint is in the maximum norm and allows for unbounded right hand sides. The analysis is valid for two and three-dimensional domains. On the basis of the devised a posteriori error estimator, we design a simple adaptive strategy that yields optimal rates of convergence for the numerical examples that we perform.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2018010
Classification : 49J20, 49M25, 65K10, 65N15, 65N30, 65Y20
Keywords: Linear-quadratic optimal control problem, Dirac measures, a posteriori error analysis, adaptive finite elements, maximum norm, Muckenhoupt weights, weighted Sobolev spaces

Allendes, Alejandro 1 ; Otárola, Enrique 1 ; Rankin, Richard 1 ; Salgado, Abner J. 1

1
@article{M2AN_2018__52_5_1617_0,
     author = {Allendes, Alejandro and Ot\'arola, Enrique and Rankin, Richard and Salgado, Abner J.},
     title = {An a posteriori error analysis for an optimal control problem with point sources},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1617--1650},
     publisher = {EDP-Sciences},
     volume = {52},
     number = {5},
     year = {2018},
     doi = {10.1051/m2an/2018010},
     zbl = {1415.49002},
     mrnumber = {3878607},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2018010/}
}
TY  - JOUR
AU  - Allendes, Alejandro
AU  - Otárola, Enrique
AU  - Rankin, Richard
AU  - Salgado, Abner J.
TI  - An a posteriori error analysis for an optimal control problem with point sources
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2018
SP  - 1617
EP  - 1650
VL  - 52
IS  - 5
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2018010/
DO  - 10.1051/m2an/2018010
LA  - en
ID  - M2AN_2018__52_5_1617_0
ER  - 
%0 Journal Article
%A Allendes, Alejandro
%A Otárola, Enrique
%A Rankin, Richard
%A Salgado, Abner J.
%T An a posteriori error analysis for an optimal control problem with point sources
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2018
%P 1617-1650
%V 52
%N 5
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2018010/
%R 10.1051/m2an/2018010
%G en
%F M2AN_2018__52_5_1617_0
Allendes, Alejandro; Otárola, Enrique; Rankin, Richard; Salgado, Abner J. An a posteriori error analysis for an optimal control problem with point sources. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 5, pp. 1617-1650. doi: 10.1051/m2an/2018010

Cité par Sources :