A posteriori snapshot location for POD in optimal control of linear parabolic equations
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 5, pp. 1847-1873

Voir la notice de l'article provenant de la source Numdam

In this paper we study the approximation of an optimal control problem for linear parabolic PDEs with model order reduction based on Proper Orthogonal Decomposition (POD-MOR). POD-MOR is a Galerkin approach where the basis functions are obtained upon information contained in time snapshots of the parabolic PDE related to given input data. In the present work we show that for POD-MOR in optimal control of parabolic equations it is important to have knowledge about the controlled system at the right time instances. We propose to determine the time instances (snapshot locations) by an a posteriori error control concept. The proposed method is based on a reformulation of the optimality system of the underlying optimal control problem as a second order in time and fourth order in space elliptic system which is approximated by a space-time finite element method. Finally, we present numerical tests to illustrate our approach and show the effectiveness of the method in comparison to existing approaches.

DOI : 10.1051/m2an/2018009
Classification : 49J20, 65N12, 78M34
Keywords: Optimal control, model order reduction, proper orthogonal decomposition, optimal snapshot location

Alla, Alessandro 1 ; Grässle, Carmen 1 ; Hinze, Michael 1

1
@article{M2AN_2018__52_5_1847_0,
     author = {Alla, Alessandro and Gr\"assle, Carmen and Hinze, Michael},
     title = {A posteriori snapshot location for {POD} in optimal control of linear parabolic equations},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1847--1873},
     publisher = {EDP-Sciences},
     volume = {52},
     number = {5},
     year = {2018},
     doi = {10.1051/m2an/2018009},
     zbl = {1417.49040},
     mrnumber = {3880599},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2018009/}
}
TY  - JOUR
AU  - Alla, Alessandro
AU  - Grässle, Carmen
AU  - Hinze, Michael
TI  - A posteriori snapshot location for POD in optimal control of linear parabolic equations
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2018
SP  - 1847
EP  - 1873
VL  - 52
IS  - 5
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2018009/
DO  - 10.1051/m2an/2018009
LA  - en
ID  - M2AN_2018__52_5_1847_0
ER  - 
%0 Journal Article
%A Alla, Alessandro
%A Grässle, Carmen
%A Hinze, Michael
%T A posteriori snapshot location for POD in optimal control of linear parabolic equations
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2018
%P 1847-1873
%V 52
%N 5
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2018009/
%R 10.1051/m2an/2018009
%G en
%F M2AN_2018__52_5_1847_0
Alla, Alessandro; Grässle, Carmen; Hinze, Michael. A posteriori snapshot location for POD in optimal control of linear parabolic equations. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 5, pp. 1847-1873. doi: 10.1051/m2an/2018009

Cité par Sources :