Voir la notice de l'article provenant de la source Numdam
We present a novel Hybrid High-Order (HHO) discretization of fourth-order elliptic problems arising from the mechanical modeling of the bending behavior of Kirchhoff–Love plates, including the biharmonic equation as a particular case. The proposed HHO method supports arbitrary approximation orders on general polygonal meshes, and reproduces the key mechanical equilibrium relations locally inside each element. When polynomials of degree are used as unknowns, we prove convergence in (with denoting, as usual, the meshsize) in an energy-like norm. A key ingredient in the proof are novel approximation results for the energy projector on local polynomial spaces. Under biharmonic regularity assumptions, a sharp estimate in is also derived for the -norm of the error on the deflection. The theoretical results are supported by numerical experiments, which additionally show the robustness of the method with respect to the choice of the stabilization.
Bonaldi, Francesco 1 ; Di Pietro, Daniele A. 1 ; Geymonat, Giuseppe 1 ; Krasucki, Françoise 1
@article{M2AN_2018__52_2_393_0, author = {Bonaldi, Francesco and Di Pietro, Daniele A. and Geymonat, Giuseppe and Krasucki, Fran\c{c}oise}, title = {A {Hybrid} {High-Order} method for {Kirchhoff{\textendash}Love} plate bending problems}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {393--421}, publisher = {EDP-Sciences}, volume = {52}, number = {2}, year = {2018}, doi = {10.1051/m2an/2017065}, zbl = {1404.65251}, mrnumber = {3834430}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2017065/} }
TY - JOUR AU - Bonaldi, Francesco AU - Di Pietro, Daniele A. AU - Geymonat, Giuseppe AU - Krasucki, Françoise TI - A Hybrid High-Order method for Kirchhoff–Love plate bending problems JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2018 SP - 393 EP - 421 VL - 52 IS - 2 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2017065/ DO - 10.1051/m2an/2017065 LA - en ID - M2AN_2018__52_2_393_0 ER -
%0 Journal Article %A Bonaldi, Francesco %A Di Pietro, Daniele A. %A Geymonat, Giuseppe %A Krasucki, Françoise %T A Hybrid High-Order method for Kirchhoff–Love plate bending problems %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2018 %P 393-421 %V 52 %N 2 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2017065/ %R 10.1051/m2an/2017065 %G en %F M2AN_2018__52_2_393_0
Bonaldi, Francesco; Di Pietro, Daniele A.; Geymonat, Giuseppe; Krasucki, Françoise. A Hybrid High-Order method for Kirchhoff–Love plate bending problems. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 2, pp. 393-421. doi: 10.1051/m2an/2017065
Cité par Sources :