Entropy-stable space–time DG schemes for non-conservative hyperbolic systems
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 3, pp. 995-1022

Voir la notice de l'article provenant de la source Numdam

We propose a space–time discontinuous Galerkin (DG) method to approximate multi-dimensional non-conservative hyperbolic systems. The scheme is based on a particular choice of interface fluctuations. The key difference with existing space–time DG methods lies in the fact that our scheme is formulated in entropy variables, allowing us to prove entropy stability for the method. Additional numerical stabilization in the form of streamline diffusion and shock-capturing terms are added. The resulting method is entropy stable, arbitrary high-order accurate, fully discrete, and able to handle complex domain geometries discretized with unstructured grids. We illustrate the method with representative numerical examples.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2017056
Classification : 65M60, 65M12, 35L60, 76L05
Keywords: Multidimensional nonconservative hyperbolic systems, space–time discontinuous Galerkin methods, entropy-stability, streamline diffusion, shock-capturing methods, two-layer shallow water system.

Hiltebrand, Andreas 1 ; Mishra, Siddhartha 1 ; Parés, Carlos 1

1
@article{M2AN_2018__52_3_995_0,
     author = {Hiltebrand, Andreas and Mishra, Siddhartha and Par\'es, Carlos},
     title = {Entropy-stable space{\textendash}time {DG} schemes for non-conservative hyperbolic systems},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {995--1022},
     publisher = {EDP-Sciences},
     volume = {52},
     number = {3},
     year = {2018},
     doi = {10.1051/m2an/2017056},
     mrnumber = {3865556},
     zbl = {1405.65121},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2017056/}
}
TY  - JOUR
AU  - Hiltebrand, Andreas
AU  - Mishra, Siddhartha
AU  - Parés, Carlos
TI  - Entropy-stable space–time DG schemes for non-conservative hyperbolic systems
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2018
SP  - 995
EP  - 1022
VL  - 52
IS  - 3
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2017056/
DO  - 10.1051/m2an/2017056
LA  - en
ID  - M2AN_2018__52_3_995_0
ER  - 
%0 Journal Article
%A Hiltebrand, Andreas
%A Mishra, Siddhartha
%A Parés, Carlos
%T Entropy-stable space–time DG schemes for non-conservative hyperbolic systems
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2018
%P 995-1022
%V 52
%N 3
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2017056/
%R 10.1051/m2an/2017056
%G en
%F M2AN_2018__52_3_995_0
Hiltebrand, Andreas; Mishra, Siddhartha; Parés, Carlos. Entropy-stable space–time DG schemes for non-conservative hyperbolic systems. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 3, pp. 995-1022. doi: 10.1051/m2an/2017056

Cité par Sources :