Convergence analysis of Padé approximations for Helmholtz frequency response problems
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 4, pp. 1261-1284

Voir la notice de l'article provenant de la source Numdam

The present work concerns the approximation of the solution map S associated to the parametric Helmholtz boundary value problem, i.e., the map which associates to each (real) wavenumber belonging to a given interval of interest the corresponding solution of the Helmholtz equation. We introduce a least squares rational Padé-type approximation technique applicable to any meromorphic Hilbert space-valued univariate map, and we prove the uniform convergence of the Padé approximation error on any compact subset of the interval of interest that excludes any pole. This general result is then applied to the Helmholtz solution map S, which is proven to be meromorphic in ℂ, with a pole of order one in every (single or multiple) eigenvalue of the Laplace operator with the considered boundary conditions. Numerical tests are provided that confirm the theoretical upper bound on the Padé approximation error for the Helmholtz solution map.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2017050
Classification : 30D30, 41A21, 41A25, 35J05, 65N30
Keywords: Hilbert space-valued meromorphic maps, Padé approximants, convergence of Padé approximants, parametric PDEs, Helmholtz equation

Bonizzoni, Francesca 1 ; Nobile, Fabio 2 ; Perugia, Ilaria 1

1 Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090 Wien, Austria
2 CSQI – Calcul Scientifique et Quantification de l’Incertitude, MATHICSE, École Polytechnique Fédérale de Lausanne, Station 8, CH-1015 Lausanne, Switzerland
@article{M2AN_2018__52_4_1261_0,
     author = {Bonizzoni, Francesca and Nobile, Fabio and Perugia, Ilaria},
     title = {Convergence analysis of {Pad\'e} approximations for {Helmholtz} frequency response problems},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1261--1284},
     publisher = {EDP-Sciences},
     volume = {52},
     number = {4},
     year = {2018},
     doi = {10.1051/m2an/2017050},
     mrnumber = {3875286},
     zbl = {1411.35079},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2017050/}
}
TY  - JOUR
AU  - Bonizzoni, Francesca
AU  - Nobile, Fabio
AU  - Perugia, Ilaria
TI  - Convergence analysis of Padé approximations for Helmholtz frequency response problems
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2018
SP  - 1261
EP  - 1284
VL  - 52
IS  - 4
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2017050/
DO  - 10.1051/m2an/2017050
LA  - en
ID  - M2AN_2018__52_4_1261_0
ER  - 
%0 Journal Article
%A Bonizzoni, Francesca
%A Nobile, Fabio
%A Perugia, Ilaria
%T Convergence analysis of Padé approximations for Helmholtz frequency response problems
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2018
%P 1261-1284
%V 52
%N 4
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2017050/
%R 10.1051/m2an/2017050
%G en
%F M2AN_2018__52_4_1261_0
Bonizzoni, Francesca; Nobile, Fabio; Perugia, Ilaria. Convergence analysis of Padé approximations for Helmholtz frequency response problems. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 4, pp. 1261-1284. doi: 10.1051/m2an/2017050

Cité par Sources :