Voir la notice de l'article provenant de la source Numdam
In this paper, we give a second order in time incremental pressure correction finite element method for the Navier-Stokes/Darcy problem. In this method, the Navier-Stokes/Darcy problem is solved in three steps: a convection-diffusion step, a projection correction (incremental pressure correction) step and a Darcy step. In this way, the Navier-Stokes/Darcy equation is solved in a fractional step way, which is a decoupled method. In order to decouple the equation, we use the numerical solutions at the last time level to give the interface conditions. The stability analysis shows that the second order in time incremental pressure correction finite element method is unconditionally stable. The optimal error estimate is also given. Finally, we present some numerical results to show the efficiency of the method.
Wang, Yunxia 1 ; Li, Shishun 2 ; Si, Zhiyong 2
@article{M2AN_2018__52_4_1477_0, author = {Wang, Yunxia and Li, Shishun and Si, Zhiyong}, title = {A second order in time incremental pressure correction finite element method for the {Navier-Stokes/Darcy} problem}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1477--1500}, publisher = {EDP-Sciences}, volume = {52}, number = {4}, year = {2018}, doi = {10.1051/m2an/2017049}, zbl = {1405.76011}, mrnumber = {3875294}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2017049/} }
TY - JOUR AU - Wang, Yunxia AU - Li, Shishun AU - Si, Zhiyong TI - A second order in time incremental pressure correction finite element method for the Navier-Stokes/Darcy problem JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2018 SP - 1477 EP - 1500 VL - 52 IS - 4 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2017049/ DO - 10.1051/m2an/2017049 LA - en ID - M2AN_2018__52_4_1477_0 ER -
%0 Journal Article %A Wang, Yunxia %A Li, Shishun %A Si, Zhiyong %T A second order in time incremental pressure correction finite element method for the Navier-Stokes/Darcy problem %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2018 %P 1477-1500 %V 52 %N 4 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2017049/ %R 10.1051/m2an/2017049 %G en %F M2AN_2018__52_4_1477_0
Wang, Yunxia; Li, Shishun; Si, Zhiyong. A second order in time incremental pressure correction finite element method for the Navier-Stokes/Darcy problem. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 4, pp. 1477-1500. doi: 10.1051/m2an/2017049
Cité par Sources :