Spectral methods for Langevin dynamics and associated error estimates
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 3, pp. 1051-1083

Voir la notice de l'article provenant de la source Numdam

We prove the consistency of Galerkin methods to solve Poisson equations where the differential operator under consideration is hypocoercive. We show in particular how the hypocoercive nature of the generator associated with Langevin dynamics can be used at the discrete level to first prove the invertibility of the rigidity matrix, and next provide error bounds on the approximation of the solution of the Poisson equation. We present general convergence results in an abstract setting, as well as explicit convergence rates for a simple example discretized using a tensor basis. Our theoretical findings are illustrated by numerical simulations.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2017044
Classification : 82C31, 35H10, 65N15, 65N35
Keywords: Langevin dynamics, spectral methods, Poisson equation, error estimates.

Roussel, Julien 1 ; Stoltz, Gabriel 1

1
@article{M2AN_2018__52_3_1051_0,
     author = {Roussel, Julien and Stoltz, Gabriel},
     title = {Spectral methods for {Langevin} dynamics and associated error estimates},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1051--1083},
     publisher = {EDP-Sciences},
     volume = {52},
     number = {3},
     year = {2018},
     doi = {10.1051/m2an/2017044},
     mrnumber = {3865558},
     zbl = {1404.82050},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2017044/}
}
TY  - JOUR
AU  - Roussel, Julien
AU  - Stoltz, Gabriel
TI  - Spectral methods for Langevin dynamics and associated error estimates
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2018
SP  - 1051
EP  - 1083
VL  - 52
IS  - 3
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2017044/
DO  - 10.1051/m2an/2017044
LA  - en
ID  - M2AN_2018__52_3_1051_0
ER  - 
%0 Journal Article
%A Roussel, Julien
%A Stoltz, Gabriel
%T Spectral methods for Langevin dynamics and associated error estimates
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2018
%P 1051-1083
%V 52
%N 3
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2017044/
%R 10.1051/m2an/2017044
%G en
%F M2AN_2018__52_3_1051_0
Roussel, Julien; Stoltz, Gabriel. Spectral methods for Langevin dynamics and associated error estimates. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 3, pp. 1051-1083. doi: 10.1051/m2an/2017044

Cité par Sources :