Voir la notice de l'article provenant de la source Numdam
In this paper, we study the superconvergence behavior of discontinuous Galerkin methods using upwind numerical fluxes for one-dimensional linear hyperbolic equations with degenerate variable coefficients. The study establishes superconvergence results for the flux function approximation as well as for the DG solution itself. To be more precise, we first prove that the DG flux function is superconvergent towards a particular flux function of the exact solution, with an order of , when piecewise polynomials of degree are used. We then prove that the highest superconvergence rate of the DG solution itself is as the variable coefficient degenerates or achieves the value zero in the domain. As byproducts, we obtain superconvergence properties for the DG solution and the DG flux function at special points and for cell averages. All theoretical findings are confirmed by numerical experiments.
Cao, Waixiang 1 ; Shu, Chi-Wang 2 ; Zhang, Zhimin 3, 4
@article{M2AN_2017__51_6_2213_0, author = {Cao, Waixiang and Shu, Chi-Wang and Zhang, Zhimin}, title = {Superconvergence of discontinuous {Galerkin} methods for {1-D} linear hyperbolic equations with degenerate variable coefficients}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {2213--2235}, publisher = {EDP-Sciences}, volume = {51}, number = {6}, year = {2017}, doi = {10.1051/m2an/2017026}, mrnumber = {3745170}, zbl = {1382.65274}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2017026/} }
TY - JOUR AU - Cao, Waixiang AU - Shu, Chi-Wang AU - Zhang, Zhimin TI - Superconvergence of discontinuous Galerkin methods for 1-D linear hyperbolic equations with degenerate variable coefficients JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2017 SP - 2213 EP - 2235 VL - 51 IS - 6 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2017026/ DO - 10.1051/m2an/2017026 LA - en ID - M2AN_2017__51_6_2213_0 ER -
%0 Journal Article %A Cao, Waixiang %A Shu, Chi-Wang %A Zhang, Zhimin %T Superconvergence of discontinuous Galerkin methods for 1-D linear hyperbolic equations with degenerate variable coefficients %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2017 %P 2213-2235 %V 51 %N 6 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2017026/ %R 10.1051/m2an/2017026 %G en %F M2AN_2017__51_6_2213_0
Cao, Waixiang; Shu, Chi-Wang; Zhang, Zhimin. Superconvergence of discontinuous Galerkin methods for 1-D linear hyperbolic equations with degenerate variable coefficients. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 6, pp. 2213-2235. doi: 10.1051/m2an/2017026
Cité par Sources :