Superconvergence of discontinuous Galerkin methods for 1-D linear hyperbolic equations with degenerate variable coefficients
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 6, pp. 2213-2235

Voir la notice de l'article provenant de la source Numdam

In this paper, we study the superconvergence behavior of discontinuous Galerkin methods using upwind numerical fluxes for one-dimensional linear hyperbolic equations with degenerate variable coefficients. The study establishes superconvergence results for the flux function approximation as well as for the DG solution itself. To be more precise, we first prove that the DG flux function is superconvergent towards a particular flux function of the exact solution, with an order of O(h k+2 ), when piecewise polynomials of degree k are used. We then prove that the highest superconvergence rate of the DG solution itself is O(h k+3/2 ) as the variable coefficient degenerates or achieves the value zero in the domain. As byproducts, we obtain superconvergence properties for the DG solution and the DG flux function at special points and for cell averages. All theoretical findings are confirmed by numerical experiments.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2017026
Classification : 65M15, 65M60, 65N30
Keywords: Discontinuous Galerkin methods, superconvergence, degenerate variable coefficients, Radau points, upwind fluxes

Cao, Waixiang 1 ; Shu, Chi-Wang 2 ; Zhang, Zhimin 3, 4

1 School of Data and Computer Science, Sun Yat-sen University, Guangzhou 510006, China.
2 Division of Applied Mathematics, Brown University, Providence, RI 02912, USA.
3 Beijing Computational Science Research Center, Beijing 100193, China.
4 Department of Mathematics, Wayne State University, Detroit, MI 48202, USA.
@article{M2AN_2017__51_6_2213_0,
     author = {Cao, Waixiang and Shu, Chi-Wang and Zhang, Zhimin},
     title = {Superconvergence of discontinuous {Galerkin} methods for {1-D} linear hyperbolic equations with degenerate variable coefficients},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {2213--2235},
     publisher = {EDP-Sciences},
     volume = {51},
     number = {6},
     year = {2017},
     doi = {10.1051/m2an/2017026},
     mrnumber = {3745170},
     zbl = {1382.65274},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2017026/}
}
TY  - JOUR
AU  - Cao, Waixiang
AU  - Shu, Chi-Wang
AU  - Zhang, Zhimin
TI  - Superconvergence of discontinuous Galerkin methods for 1-D linear hyperbolic equations with degenerate variable coefficients
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2017
SP  - 2213
EP  - 2235
VL  - 51
IS  - 6
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2017026/
DO  - 10.1051/m2an/2017026
LA  - en
ID  - M2AN_2017__51_6_2213_0
ER  - 
%0 Journal Article
%A Cao, Waixiang
%A Shu, Chi-Wang
%A Zhang, Zhimin
%T Superconvergence of discontinuous Galerkin methods for 1-D linear hyperbolic equations with degenerate variable coefficients
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2017
%P 2213-2235
%V 51
%N 6
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2017026/
%R 10.1051/m2an/2017026
%G en
%F M2AN_2017__51_6_2213_0
Cao, Waixiang; Shu, Chi-Wang; Zhang, Zhimin. Superconvergence of discontinuous Galerkin methods for 1-D linear hyperbolic equations with degenerate variable coefficients. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 6, pp. 2213-2235. doi: 10.1051/m2an/2017026

Cité par Sources :