A note on semilinear fractional elliptic equation: analysis and discretization
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 6, pp. 2049-2067

Voir la notice de l'article provenant de la source Numdam

In this paper we study existence, regularity, and approximation of solution to a fractional semilinear elliptic equation of order s(0,1). We identify minimal conditions on the nonlinear term and the source which lead to existence of weak solutions and uniform L -bound on the solutions. Next we realize the fractional Laplacian as a Dirichlet-to-Neumann map via the Caffarelli−Silvestre extension. We introduce a first-degree tensor product finite elements space to approximate the truncated problem. We derive a priori error estimates and conclude with an illustrative numerical example.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2017023
Classification : 35S15, 26A33, 65R20, 65N12, 65N30
Keywords: Fractional Dirichlet Laplace operator, semi-linear elliptic problems, regularity of weak solutions, discretization, error estimates

Antil, Harbir 1 ; Pfefferer, Johannes 2 ; Warma, Mahamadi 3

1 Department of Mathematical Sciences, George Mason University, Fairfax, VA 22030, USA.
2 Chair of Optimal Control, Center of Mathematical Sciences, Technical University of Munich, Boltzmannstraße 3, 85748 Garching by Munich, Germany.
3 University of Puerto Rico (Rio Piedras Campus), College of Natural Sciences, Department of Mathematics, PO Box 70377 San Juan PR 00936-8377 (USA).
@article{M2AN_2017__51_6_2049_0,
     author = {Antil, Harbir and Pfefferer, Johannes and Warma, Mahamadi},
     title = {A note on semilinear fractional elliptic equation: analysis and discretization},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {2049--2067},
     publisher = {EDP-Sciences},
     volume = {51},
     number = {6},
     year = {2017},
     doi = {10.1051/m2an/2017023},
     zbl = {1387.35648},
     mrnumber = {3745164},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2017023/}
}
TY  - JOUR
AU  - Antil, Harbir
AU  - Pfefferer, Johannes
AU  - Warma, Mahamadi
TI  - A note on semilinear fractional elliptic equation: analysis and discretization
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2017
SP  - 2049
EP  - 2067
VL  - 51
IS  - 6
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2017023/
DO  - 10.1051/m2an/2017023
LA  - en
ID  - M2AN_2017__51_6_2049_0
ER  - 
%0 Journal Article
%A Antil, Harbir
%A Pfefferer, Johannes
%A Warma, Mahamadi
%T A note on semilinear fractional elliptic equation: analysis and discretization
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2017
%P 2049-2067
%V 51
%N 6
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2017023/
%R 10.1051/m2an/2017023
%G en
%F M2AN_2017__51_6_2049_0
Antil, Harbir; Pfefferer, Johannes; Warma, Mahamadi. A note on semilinear fractional elliptic equation: analysis and discretization. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 6, pp. 2049-2067. doi: 10.1051/m2an/2017023

Cité par Sources :