Stability analysis and error estimates of local discontinuous Galerkin methods with implicit-explicit time-marching for the time-dependent fourth order PDEs
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 5, pp. 1931-1955

Voir la notice de l'article provenant de la source Numdam

The main purpose of this paper is to give stability analysis and error estimates of the local discontinuous Galerkin (LDG) methods coupled with three specific implicit-explicit (IMEX) Runge–Kutta time discretization methods up to third order accuracy, for solving one-dimensional time-dependent linear fourth order partial differential equations. In the time discretization, all the lower order derivative terms are treated explicitly and the fourth order derivative term is treated implicitly. By the aid of energy analysis, we show that the IMEX-LDG schemes are unconditionally energy stable, in the sense that the time step τ is only required to be upper-bounded by a constant which is independent of the mesh size h. The optimal error estimate is also derived by the aid of the elliptic projection and the adjoint argument. Numerical experiments are given to verify that the corresponding IMEX-LDG schemes can achieve optimal error accuracy.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2017017
Classification : 65M12, 65M15, 65M60
Keywords: Local discontinuous Galerkin method, implicit-explicit time-marching scheme, time-dependent fourth order equations, stability, error estimates

Wang, Haijin 1 ; Zhang, Qiang 2 ; Shu, Chi-Wang 3

1 College of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, Jiangsu Province, P.R. China.
2 Department of Mathematics, Nanjing University, Nanjing 210093, Jiangsu Province, P.R. China
3 Division of Applied Mathematics, Brown University, Providence, RI 02912, USA.
@article{M2AN_2017__51_5_1931_0,
     author = {Wang, Haijin and Zhang, Qiang and Shu, Chi-Wang},
     title = {Stability analysis and error estimates of local discontinuous {Galerkin} methods with implicit-explicit time-marching for the time-dependent fourth order {PDEs}},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1931--1955},
     publisher = {EDP-Sciences},
     volume = {51},
     number = {5},
     year = {2017},
     doi = {10.1051/m2an/2017017},
     zbl = {1407.65204},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2017017/}
}
TY  - JOUR
AU  - Wang, Haijin
AU  - Zhang, Qiang
AU  - Shu, Chi-Wang
TI  - Stability analysis and error estimates of local discontinuous Galerkin methods with implicit-explicit time-marching for the time-dependent fourth order PDEs
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2017
SP  - 1931
EP  - 1955
VL  - 51
IS  - 5
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2017017/
DO  - 10.1051/m2an/2017017
LA  - en
ID  - M2AN_2017__51_5_1931_0
ER  - 
%0 Journal Article
%A Wang, Haijin
%A Zhang, Qiang
%A Shu, Chi-Wang
%T Stability analysis and error estimates of local discontinuous Galerkin methods with implicit-explicit time-marching for the time-dependent fourth order PDEs
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2017
%P 1931-1955
%V 51
%N 5
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2017017/
%R 10.1051/m2an/2017017
%G en
%F M2AN_2017__51_5_1931_0
Wang, Haijin; Zhang, Qiang; Shu, Chi-Wang. Stability analysis and error estimates of local discontinuous Galerkin methods with implicit-explicit time-marching for the time-dependent fourth order PDEs. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 5, pp. 1931-1955. doi: 10.1051/m2an/2017017

Cité par Sources :