Convergence of a vector penalty projection scheme for the Navier Stokes equations with moving body
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 4, pp. 1417-1436

Voir la notice de l'article provenant de la source Numdam

In this paper, we analyse a Vector Penalty Projection Scheme (see [1]) to treat the displacement of a moving body in incompressible viscous flows in the case where the interaction of the fluid on the body can be neglected. The presence of the obstacle inside the computational domain is treated with a penalization method introducing a parameter η to enforce the velocity on the solid boundary. The incompressibility constraint is approached using a Vector Projection method which introduces a relaxation parameter ε. We show the stability of the scheme and that the pressure and velocity converge towards a limit when the relaxation parameter ε and the time step δt tend to zero with a proportionality constraint ε = λδt. Finally, when η goes to 0, we show that the problem admits a weak limit which is a weak solution of the Navier-Stokes equations with no-slip condition on the solid boundary.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2017016
Classification : 35Qxx, 65Mxx, 65Nxx, 74F10, 76D05, 76M25
Keywords: Navier-Stokes equations, Vector Penalty-projection methods, incompressible flows, moving body

Bruneau, Vincent 1 ; Doradoux, Adrien 2 ; Fabrie, Pierre 2

1 Université de Bordeaux, IMB, CNRS UMR5251, 351 cours de la libération, 33405 Talence, France
2 Bordeaux INP, Institut de Mathématiques de Bordeaux, CNRS UMR5251, ENSEIRB-MATMECA, Talence France
@article{M2AN_2018__52_4_1417_0,
     author = {Bruneau, Vincent and Doradoux, Adrien and Fabrie, Pierre},
     title = {Convergence of a vector penalty projection scheme for the {Navier} {Stokes} equations with moving body},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1417--1436},
     publisher = {EDP-Sciences},
     volume = {52},
     number = {4},
     year = {2018},
     doi = {10.1051/m2an/2017016},
     mrnumber = {3875291},
     zbl = {1406.35220},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2017016/}
}
TY  - JOUR
AU  - Bruneau, Vincent
AU  - Doradoux, Adrien
AU  - Fabrie, Pierre
TI  - Convergence of a vector penalty projection scheme for the Navier Stokes equations with moving body
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2018
SP  - 1417
EP  - 1436
VL  - 52
IS  - 4
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2017016/
DO  - 10.1051/m2an/2017016
LA  - en
ID  - M2AN_2018__52_4_1417_0
ER  - 
%0 Journal Article
%A Bruneau, Vincent
%A Doradoux, Adrien
%A Fabrie, Pierre
%T Convergence of a vector penalty projection scheme for the Navier Stokes equations with moving body
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2018
%P 1417-1436
%V 52
%N 4
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2017016/
%R 10.1051/m2an/2017016
%G en
%F M2AN_2018__52_4_1417_0
Bruneau, Vincent; Doradoux, Adrien; Fabrie, Pierre. Convergence of a vector penalty projection scheme for the Navier Stokes equations with moving body. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 4, pp. 1417-1436. doi: 10.1051/m2an/2017016

Cité par Sources :