Higher order topological derivatives for three-dimensional anisotropic elasticity
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 6, pp. 2069-2092

Voir la notice de l'article provenant de la source Numdam

This article concerns an extension of the topological derivative concept for 3D elasticity problems involving elastic inhomogeneities, whereby an objective function 𝕁 is expanded in powers of the characteristic size a of a single small inhomogeneity. The O(a 6 ) approximation of 𝕁 is derived and justified for an inhomogeneity of given location, shape and elastic properties embedded in a 3D solid of arbitrary shape and elastic properties; the background and the inhomogeneity materials may both be anisotropic. The generalization to multiple small inhomogeneities is concisely described. Computational issues, and examples of objective functions commonly used in solid mechanics, are discussed.

DOI : 10.1051/m2an/2017015
Classification : 35C20, 45F15, 74B05
Keywords: Topological derivative, asymptotic expansion, volume integral equation, elastostatics

Bonnet, Marc 1 ; Cornaggia, Rémi 2

1 POEMS (ENSTA ParisTech, CNRS, INRIA, Université Paris-Saclay), Palaiseau, France.
2 IRMAR, Université Rennes-1, Rennes, France.
@article{M2AN_2017__51_6_2069_0,
     author = {Bonnet, Marc and Cornaggia, R\'emi},
     title = {Higher order topological derivatives for three-dimensional anisotropic elasticity},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {2069--2092},
     publisher = {EDP-Sciences},
     volume = {51},
     number = {6},
     year = {2017},
     doi = {10.1051/m2an/2017015},
     zbl = {1382.35071},
     mrnumber = {3745165},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2017015/}
}
TY  - JOUR
AU  - Bonnet, Marc
AU  - Cornaggia, Rémi
TI  - Higher order topological derivatives for three-dimensional anisotropic elasticity
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2017
SP  - 2069
EP  - 2092
VL  - 51
IS  - 6
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2017015/
DO  - 10.1051/m2an/2017015
LA  - en
ID  - M2AN_2017__51_6_2069_0
ER  - 
%0 Journal Article
%A Bonnet, Marc
%A Cornaggia, Rémi
%T Higher order topological derivatives for three-dimensional anisotropic elasticity
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2017
%P 2069-2092
%V 51
%N 6
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2017015/
%R 10.1051/m2an/2017015
%G en
%F M2AN_2017__51_6_2069_0
Bonnet, Marc; Cornaggia, Rémi. Higher order topological derivatives for three-dimensional anisotropic elasticity. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 6, pp. 2069-2092. doi: 10.1051/m2an/2017015

Cité par Sources :