Numerical analysis of a nonlinearly stable and positive control volume finite element scheme for Richards equation with anisotropy
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 4, pp. 1533-1567

Voir la notice de l'article provenant de la source Numdam

We extend the nonlinear Control Volume Finite Element scheme of [C. Cancès and C. Guichard, Math. Comput. 85 (2016) 549–580]. to the discretization of Richards equation. This scheme ensures the preservation of the physical bounds without any restriction on the mesh and on the anisotropy tensor. Moreover, it does not require the introduction of the so-called Kirchhoff transform in its definition. It also provides a control on the capillary energy. Based on this nonlinear stability property, we show that the scheme converges towards the unique solution to Richards equation when the discretization parameters tend to 0. Finally we present some numerical experiments to illustrate the behavior of the method.

DOI : 10.1051/m2an/2017012
Classification : 65M12, 65M08, 76S05
Keywords: Unsaturated porous media flow, Richards equation, nonlinear discretization, nonlinear stability, convergence analysis

Ait Hammou Oulhaj, Ahmed 1 ; Cancès, Clément 1 ; Chainais–Hillairet, Claire 2

1 Univ. Lille, CNRS, UMR 8524, Inria — Laboratoire Paul Painlevé, 59000 Lille, France
2 Univ. Lille, CNRS, UMR 8524, Inria — Laboratoire Paul Painlevé, 59000 Lille, France
@article{M2AN_2018__52_4_1533_0,
     author = {Ait Hammou Oulhaj, Ahmed and Canc\`es, Cl\'ement and Chainais{\textendash}Hillairet, Claire},
     title = {Numerical analysis of a nonlinearly stable and positive control volume finite element scheme for {Richards} equation with anisotropy},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1533--1567},
     publisher = {EDP-Sciences},
     volume = {52},
     number = {4},
     year = {2018},
     doi = {10.1051/m2an/2017012},
     zbl = {1407.65160},
     mrnumber = {3875296},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2017012/}
}
TY  - JOUR
AU  - Ait Hammou Oulhaj, Ahmed
AU  - Cancès, Clément
AU  - Chainais–Hillairet, Claire
TI  - Numerical analysis of a nonlinearly stable and positive control volume finite element scheme for Richards equation with anisotropy
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2018
SP  - 1533
EP  - 1567
VL  - 52
IS  - 4
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2017012/
DO  - 10.1051/m2an/2017012
LA  - en
ID  - M2AN_2018__52_4_1533_0
ER  - 
%0 Journal Article
%A Ait Hammou Oulhaj, Ahmed
%A Cancès, Clément
%A Chainais–Hillairet, Claire
%T Numerical analysis of a nonlinearly stable and positive control volume finite element scheme for Richards equation with anisotropy
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2018
%P 1533-1567
%V 52
%N 4
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2017012/
%R 10.1051/m2an/2017012
%G en
%F M2AN_2018__52_4_1533_0
Ait Hammou Oulhaj, Ahmed; Cancès, Clément; Chainais–Hillairet, Claire. Numerical analysis of a nonlinearly stable and positive control volume finite element scheme for Richards equation with anisotropy. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 4, pp. 1533-1567. doi: 10.1051/m2an/2017012

Cité par Sources :