Analytical treatment for the asymptotic analysis of microscopic impenetrability constraints for atomistic systems
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 5, pp. 1903-1929

Voir la notice de l'article provenant de la source Numdam

In this paper we provide rigorous statements and proofs for the asymptotic analysis of discrete energies defined on a two-dimensional triangular lattice allowing for fracture in presence of a microscopic impenetrability constraint. As the lattice parameter goes to 0, we prove that any limit deformation with finite energy is piecewise rigid and we prove a general lower bound with a suitable Griffith-fracture energy density which reflects the anisotropies of the underlying triangular lattice. For such a continuum energy we also provide a class of (piecewise rigid) deformations satisfying “opening-crack” conditions on which the lower bound is sharp. Relying on these results, some consequences have been already presented in the companion paper [A. Braides et al., J. Mech. Phys. Solids 96 (2016) 235–251] to validate models in Computational Mechanics in the small-deformation regime.

DOI : 10.1051/m2an/2017011
Classification : 49J45
Keywords: Variational theory of fracture, discrete-to-continuum analysis, Γ-convergence, Lennard−Jones potentials

Braides, Andrea 1 ; Gelli, Maria Stella 2

1 Dipartimento di Matematica, Università di Roma Tor Vergata, Roma, Italy.
2 Dipartimento di Matematica, Università di Pisa, Pisa, Italy.
@article{M2AN_2017__51_5_1903_0,
     author = {Braides, Andrea and Gelli, Maria Stella},
     title = {Analytical treatment for the asymptotic analysis of microscopic impenetrability constraints for atomistic systems},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1903--1929},
     publisher = {EDP-Sciences},
     volume = {51},
     number = {5},
     year = {2017},
     doi = {10.1051/m2an/2017011},
     zbl = {1381.49011},
     mrnumber = {3731554},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2017011/}
}
TY  - JOUR
AU  - Braides, Andrea
AU  - Gelli, Maria Stella
TI  - Analytical treatment for the asymptotic analysis of microscopic impenetrability constraints for atomistic systems
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2017
SP  - 1903
EP  - 1929
VL  - 51
IS  - 5
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2017011/
DO  - 10.1051/m2an/2017011
LA  - en
ID  - M2AN_2017__51_5_1903_0
ER  - 
%0 Journal Article
%A Braides, Andrea
%A Gelli, Maria Stella
%T Analytical treatment for the asymptotic analysis of microscopic impenetrability constraints for atomistic systems
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2017
%P 1903-1929
%V 51
%N 5
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2017011/
%R 10.1051/m2an/2017011
%G en
%F M2AN_2017__51_5_1903_0
Braides, Andrea; Gelli, Maria Stella. Analytical treatment for the asymptotic analysis of microscopic impenetrability constraints for atomistic systems. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 5, pp. 1903-1929. doi: 10.1051/m2an/2017011

Cité par Sources :