Voir la notice de l'article provenant de la source Numdam
The convergence behaviour of multi-revolution composition methods combined with time-splitting methods is analysed for highly oscillatory linear differential equations of Schrödinger type. Numerical experiments illustrate and complement the theoretical investigations.
Chartier, Philippe 1 ; Méhats, Florian 2 ; Thalhammer, Mechthild 3 ; Zhang, Yong 4
@article{M2AN_2017__51_5_1859_0, author = {Chartier, Philippe and M\'ehats, Florian and Thalhammer, Mechthild and Zhang, Yong}, title = {Convergence of multi-revolution composition time-splitting methods for highly oscillatory differential equations of {Schr\"odinger} type}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1859--1882}, publisher = {EDP-Sciences}, volume = {51}, number = {5}, year = {2017}, doi = {10.1051/m2an/2017010}, zbl = {1421.65011}, mrnumber = {3731552}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2017010/} }
TY - JOUR AU - Chartier, Philippe AU - Méhats, Florian AU - Thalhammer, Mechthild AU - Zhang, Yong TI - Convergence of multi-revolution composition time-splitting methods for highly oscillatory differential equations of Schrödinger type JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2017 SP - 1859 EP - 1882 VL - 51 IS - 5 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2017010/ DO - 10.1051/m2an/2017010 LA - en ID - M2AN_2017__51_5_1859_0 ER -
%0 Journal Article %A Chartier, Philippe %A Méhats, Florian %A Thalhammer, Mechthild %A Zhang, Yong %T Convergence of multi-revolution composition time-splitting methods for highly oscillatory differential equations of Schrödinger type %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2017 %P 1859-1882 %V 51 %N 5 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2017010/ %R 10.1051/m2an/2017010 %G en %F M2AN_2017__51_5_1859_0
Chartier, Philippe; Méhats, Florian; Thalhammer, Mechthild; Zhang, Yong. Convergence of multi-revolution composition time-splitting methods for highly oscillatory differential equations of Schrödinger type. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 5, pp. 1859-1882. doi: 10.1051/m2an/2017010
Cité par Sources :