An Adaptive Parametrized-Background Data-Weak approach to variational data assimilation
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 5, pp. 1827-1858

Voir la notice de l'article provenant de la source Numdam

We present an Adaptive Parametrized-Background Data-Weak (APBDW) approach to the steady-state variational data assimilation (state estimation) problem for systems modeled by partial differential equations. The variational formulation is based on the Tikhonov regularization of the PBDW formulation [Y. Maday, A.T. Patera, J.D. Penn and M. Yano, Int. J. Numer. Meth. Eng. 102 (2015) 933–965] for pointwise noisy measurements. We propose an adaptive procedure based on a posteriori estimates of the L 2 state-estimation error to improve performance. We also present a priori estimates for the L 2 state-estimation error that motivate the approach and guide the adaptive procedure. We provide numerical experiments for a synthetic acoustic problem to illustrate the different elements of the methodology, and we consider an experimental thermal patch configuration to demonstrate the applicability of our approach to real physical systems.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2017005
Classification : 62-07, 93E24
Keywords: Variational data assimilation, parametrized partial differential equations, model order reduction, kernel methods

Taddei, Tommaso 1

1 Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
@article{M2AN_2017__51_5_1827_0,
     author = {Taddei, Tommaso},
     title = {An {Adaptive} {Parametrized-Background} {Data-Weak} approach to variational data assimilation},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1827--1858},
     publisher = {EDP-Sciences},
     volume = {51},
     number = {5},
     year = {2017},
     doi = {10.1051/m2an/2017005},
     zbl = {1392.62125},
     mrnumber = {3731551},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2017005/}
}
TY  - JOUR
AU  - Taddei, Tommaso
TI  - An Adaptive Parametrized-Background Data-Weak approach to variational data assimilation
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2017
SP  - 1827
EP  - 1858
VL  - 51
IS  - 5
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2017005/
DO  - 10.1051/m2an/2017005
LA  - en
ID  - M2AN_2017__51_5_1827_0
ER  - 
%0 Journal Article
%A Taddei, Tommaso
%T An Adaptive Parametrized-Background Data-Weak approach to variational data assimilation
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2017
%P 1827-1858
%V 51
%N 5
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2017005/
%R 10.1051/m2an/2017005
%G en
%F M2AN_2017__51_5_1827_0
Taddei, Tommaso. An Adaptive Parametrized-Background Data-Weak approach to variational data assimilation. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 5, pp. 1827-1858. doi: 10.1051/m2an/2017005

Cité par Sources :