A posteriori modeling error estimates in the optimization of two-scale elastic composite materials
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 4, pp. 1457-1476

Voir la notice de l'article provenant de la source Numdam

The a posteriori analysis of the discretization error and the modeling error is studied for a compliance cost functional in the context of the optimization of composite elastic materials and a two-scale linearized elasticity model. A mechanically simple, parametrized microscopic supporting structure is chosen and the parameters describing the structure are determined minimizing the compliance objective. An a posteriori error estimate is derived which includes the modeling error caused by the replacement of a nested laminate microstructure by this considerably simpler microstructure. Indeed, nested laminates are known to realize the minimal compliance and provide a benchmark for the quality of the microstructures. To estimate the local difference in the compliance functional the dual weighted residual approach is used. Different numerical experiments show that the resulting adaptive scheme leads to simple parametrized microscopic supporting structures that can compete with the optimal nested laminate construction. The derived a posteriori error indicators allow to verify that the suggested simplified microstructures achieve the optimal value of the compliance up to a few percent. Furthermore, it is shown how discretization error and modeling error can be balanced by choosing an optimal level of grid refinement. Our two scale results with a single scale microstructure can provide guidance towards the design of a producible macroscopic fine scale pattern.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2017004
Classification : 35B27, 49M29, 49Q1, 65N30, 65N38, 74P05
Keywords: Elastic shape optimization, two-scale optimization, nested laminates, homogenization, a posteriori error estimates, adaptive meshes

Conti, Sergio 1 ; Geihe, Benedict 1 ; Lenz, Martin 1 ; Rumpf, Martin 1

1 Institute for Applied Mathematics, Rheinische Friedrich-Wilhelms-Universität Bonn, Endenicher Allee 60, 53115 Bonn, Germany
@article{M2AN_2018__52_4_1457_0,
     author = {Conti, Sergio and Geihe, Benedict and Lenz, Martin and Rumpf, Martin},
     title = {A posteriori modeling error estimates in the optimization of two-scale elastic composite materials},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1457--1476},
     publisher = {EDP-Sciences},
     volume = {52},
     number = {4},
     year = {2018},
     doi = {10.1051/m2an/2017004},
     mrnumber = {3875293},
     zbl = {1456.65159},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2017004/}
}
TY  - JOUR
AU  - Conti, Sergio
AU  - Geihe, Benedict
AU  - Lenz, Martin
AU  - Rumpf, Martin
TI  - A posteriori modeling error estimates in the optimization of two-scale elastic composite materials
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2018
SP  - 1457
EP  - 1476
VL  - 52
IS  - 4
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2017004/
DO  - 10.1051/m2an/2017004
LA  - en
ID  - M2AN_2018__52_4_1457_0
ER  - 
%0 Journal Article
%A Conti, Sergio
%A Geihe, Benedict
%A Lenz, Martin
%A Rumpf, Martin
%T A posteriori modeling error estimates in the optimization of two-scale elastic composite materials
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2018
%P 1457-1476
%V 52
%N 4
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2017004/
%R 10.1051/m2an/2017004
%G en
%F M2AN_2018__52_4_1457_0
Conti, Sergio; Geihe, Benedict; Lenz, Martin; Rumpf, Martin. A posteriori modeling error estimates in the optimization of two-scale elastic composite materials. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 4, pp. 1457-1476. doi: 10.1051/m2an/2017004

Cité par Sources :