Oscillating behaviour of the spectrum for a plasmonic problem in a domain with a rounded corner
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 4, pp. 1285-1313

Voir la notice de l'article provenant de la source Numdam

We investigate the eigenvalue problem −div(σ∇u) = λu (P) in a 2D domain Ω divided into two regions Ω±. We are interested in situations where σ takes positive values on Ω+ and negative ones on Ω. Such problems appear in time harmonic electromagnetics in the modeling of plasmonic technologies. In a recent work [L. Chesnel, X. Claeys and S.A. Nazarov, Asymp. Anal. 88 (2014) 43–74], we highlighted an unusual instability phenomenon for the source term problem associated with (P): for certain configurations, when the interface between the subdomains Ω± presents a rounded corner, the solution may depend critically on the value of the rounding parameter. In the present article, we explain this property studying the eigenvalue problem (P). We provide an asymptotic expansion of the eigenvalues and prove error estimates. We establish an oscillatory behaviour of the eigenvalues as the rounding parameter of the corner tends to zero. We end the paper illustrating this phenomenon with numerical experiments.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2016080
Classification : 35B25, 65N25
Keywords: Negative materials, corner, asymptotic analysis, plasmonic, metamaterial, sign-changing coefficients

Chesnel, Lucas 1 ; Claeys, Xavier 2 ; Nazarov, Sergei A. 3, 4, 5

1 INRIA/Centre de mathématiques appliquées, École Polytechnique, Université Paris-Saclay, Route de Saclay, 91128 Palaiseau, France
2 Laboratory Jacques Louis Lions, University Pierre et Marie Curie, 4 place Jussieu, 75005 Paris, France
3 St. Petersburg State University, Universitetskaya naberezhnaya, 7-9, 199034, St. Petersburg, Russia
4 Peter the Great St. Petersburg Polytechnic University, Polytekhnicheskaya ul, 29, 195251, St. Petersburg, Russia
5 Institute of Problems of Mechanical Engineering, Bolshoy prospekt, 61, 199178, V.O., St. Petersburg, Russia
@article{M2AN_2018__52_4_1285_0,
     author = {Chesnel, Lucas and Claeys, Xavier and Nazarov, Sergei A.},
     title = {Oscillating behaviour of the spectrum for a plasmonic problem in a domain with a rounded corner},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1285--1313},
     publisher = {EDP-Sciences},
     volume = {52},
     number = {4},
     year = {2018},
     doi = {10.1051/m2an/2016080},
     mrnumber = {3875287},
     zbl = {07006977},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2016080/}
}
TY  - JOUR
AU  - Chesnel, Lucas
AU  - Claeys, Xavier
AU  - Nazarov, Sergei A.
TI  - Oscillating behaviour of the spectrum for a plasmonic problem in a domain with a rounded corner
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2018
SP  - 1285
EP  - 1313
VL  - 52
IS  - 4
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2016080/
DO  - 10.1051/m2an/2016080
LA  - en
ID  - M2AN_2018__52_4_1285_0
ER  - 
%0 Journal Article
%A Chesnel, Lucas
%A Claeys, Xavier
%A Nazarov, Sergei A.
%T Oscillating behaviour of the spectrum for a plasmonic problem in a domain with a rounded corner
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2018
%P 1285-1313
%V 52
%N 4
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2016080/
%R 10.1051/m2an/2016080
%G en
%F M2AN_2018__52_4_1285_0
Chesnel, Lucas; Claeys, Xavier; Nazarov, Sergei A. Oscillating behaviour of the spectrum for a plasmonic problem in a domain with a rounded corner. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 4, pp. 1285-1313. doi: 10.1051/m2an/2016080

Cité par Sources :