Voir la notice de l'article provenant de la source Numdam
This work is devoted to the derivation of an asymptotic-preserving scheme for the electronic model in the diffusive regime. The case without electric field and the homogeneous case are studied. The derivation of the scheme is based on an approximate Riemann solver where the intermediate states are chosen consistent with the integral form of the approximate Riemann solver. This choice can be modified to enable the derivation of a numerical scheme which also satisfies the admissible conditions and is well-suited for capturing steady states. Moreover, it enjoys asymptotic-preserving properties and handles the diffusive limit recovering the correct diffusion equation. Numerical tests cases are presented, in each case, the asymptotic-preserving scheme is compared to the classical [A. Harten, P.D. Lax and B. Van Leer, SIAM Rev. 25 (1983) 35–61.] scheme usually used for the electronic model. It is shown that the new scheme gives comparable results with respect to the scheme in the classical regime. On the contrary, in the diffusive regime, the asymptotic-preserving scheme coincides with the expected diffusion equation, while the scheme suffers from a severe lack of accuracy because of its unphysical numerical viscosity.
Guisset, Sébastien 1, 2 ; Brull, Stéphane 1 ; D’Humières, Emmanuel 2 ; Dubroca, Bruno 2
@article{M2AN_2017__51_5_1805_0, author = {Guisset, S\'ebastien and Brull, St\'ephane and D{\textquoteright}Humi\`eres, Emmanuel and Dubroca, Bruno}, title = {Asymptotic-preserving well-balanced scheme for the electronic $M_{1}$ model in the diffusive limit: {Particular} cases}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1805--1826}, publisher = {EDP-Sciences}, volume = {51}, number = {5}, year = {2017}, doi = {10.1051/m2an/2016079}, mrnumber = {3731550}, zbl = {1406.78021}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2016079/} }
TY - JOUR AU - Guisset, Sébastien AU - Brull, Stéphane AU - D’Humières, Emmanuel AU - Dubroca, Bruno TI - Asymptotic-preserving well-balanced scheme for the electronic $M_{1}$ model in the diffusive limit: Particular cases JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2017 SP - 1805 EP - 1826 VL - 51 IS - 5 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2016079/ DO - 10.1051/m2an/2016079 LA - en ID - M2AN_2017__51_5_1805_0 ER -
%0 Journal Article %A Guisset, Sébastien %A Brull, Stéphane %A D’Humières, Emmanuel %A Dubroca, Bruno %T Asymptotic-preserving well-balanced scheme for the electronic $M_{1}$ model in the diffusive limit: Particular cases %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2017 %P 1805-1826 %V 51 %N 5 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2016079/ %R 10.1051/m2an/2016079 %G en %F M2AN_2017__51_5_1805_0
Guisset, Sébastien; Brull, Stéphane; D’Humières, Emmanuel; Dubroca, Bruno. Asymptotic-preserving well-balanced scheme for the electronic $M_{1}$ model in the diffusive limit: Particular cases. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 5, pp. 1805-1826. doi: 10.1051/m2an/2016079
Cité par Sources :