A numerical solution to Monge’s problem with a Finsler distance as cost
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 6, pp. 2133-2148

Voir la notice de l'article provenant de la source Numdam

Monge’s problem with a Finsler cost is intimately related to an optimal ow problem. Discretization of this problem and its dual leads to a well-posed finite-dimensional saddle-point problem which can be solved numerically relatively easily by an augmented Lagrangian approach in the same spirit as the Benamou–Brenier method for the optimal transport problem with quadratic cost. Numerical results validate the method. We also emphasize that the algorithm only requires elementary operations and in particular never involves evaluation of the Finsler distance or of geodesics.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2016077
Classification : 65K10, 90C25, 90C46
Keywords: Monge’s problem, Finsler distance, augmented Lagrangian

Benamou, Jean-David 1 ; Carlier, Guillaume 1 ; Hatchi, Roméo 

1
@article{M2AN_2018__52_6_2133_0,
     author = {Benamou, Jean-David and Carlier, Guillaume and Hatchi, Rom\'eo},
     title = {A numerical solution to {Monge{\textquoteright}s} problem with a {Finsler} distance as cost},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {2133--2148},
     publisher = {EDP-Sciences},
     volume = {52},
     number = {6},
     year = {2018},
     doi = {10.1051/m2an/2016077},
     zbl = {07063742},
     mrnumber = {3905185},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2016077/}
}
TY  - JOUR
AU  - Benamou, Jean-David
AU  - Carlier, Guillaume
AU  - Hatchi, Roméo
TI  - A numerical solution to Monge’s problem with a Finsler distance as cost
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2018
SP  - 2133
EP  - 2148
VL  - 52
IS  - 6
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2016077/
DO  - 10.1051/m2an/2016077
LA  - en
ID  - M2AN_2018__52_6_2133_0
ER  - 
%0 Journal Article
%A Benamou, Jean-David
%A Carlier, Guillaume
%A Hatchi, Roméo
%T A numerical solution to Monge’s problem with a Finsler distance as cost
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2018
%P 2133-2148
%V 52
%N 6
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2016077/
%R 10.1051/m2an/2016077
%G en
%F M2AN_2018__52_6_2133_0
Benamou, Jean-David; Carlier, Guillaume; Hatchi, Roméo. A numerical solution to Monge’s problem with a Finsler distance as cost. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 6, pp. 2133-2148. doi: 10.1051/m2an/2016077

Cité par Sources :