A convergent method for linear half-space kinetic equations
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 5, pp. 1583-1615

Voir la notice de l'article provenant de la source Numdam

We give a unified proof for the well-posedness of a class of linear half-space equations with general incoming data and construct a Galerkin method to numerically resolve this type of equations in a systematic way. Our main strategy in both analysis and numerics includes three steps: adding damping terms to the original half-space equation, using an inf-sup argument and even-odd decomposition to establish the well-posedness of the damped equation, and then recovering solutions to the original half-space equation. The proposed numerical methods for the damped equation is shown to be quasi-optimal and the numerical error of approximations to the original equation is controlled by that of the damped equation. This efficient solution to the half-space problem is useful for kinetic-fluid coupling simulations.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2016076
Classification : 35F15, 35Q79
Keywords: Half-space equations, boundary layer, kinetic-fluid coupling, Galerkin method

Li, Qin 1 ; Lu, Jianfeng 2 ; Sun, Weiran 3

1 Computing and Mathematical Sciences, California Institute of Technology, 1200 E California Blvd. MC 305-16, Pasadena, CA 91125 USA.
2 Department of Mathematics, Department of Physics, and Department of Chemistry, Duke University, Box 90320, Durham, NC 27708 USA.
3 Department of Mathematics, Simon Fraser University, 8888 University Dr., Burnaby, BC V5A 1S6, Canada.
@article{M2AN_2017__51_5_1583_0,
     author = {Li, Qin and Lu, Jianfeng and Sun, Weiran},
     title = {A convergent method for linear half-space kinetic equations},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1583--1615},
     publisher = {EDP-Sciences},
     volume = {51},
     number = {5},
     year = {2017},
     doi = {10.1051/m2an/2016076},
     mrnumber = {3731542},
     zbl = {1380.35006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2016076/}
}
TY  - JOUR
AU  - Li, Qin
AU  - Lu, Jianfeng
AU  - Sun, Weiran
TI  - A convergent method for linear half-space kinetic equations
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2017
SP  - 1583
EP  - 1615
VL  - 51
IS  - 5
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2016076/
DO  - 10.1051/m2an/2016076
LA  - en
ID  - M2AN_2017__51_5_1583_0
ER  - 
%0 Journal Article
%A Li, Qin
%A Lu, Jianfeng
%A Sun, Weiran
%T A convergent method for linear half-space kinetic equations
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2017
%P 1583-1615
%V 51
%N 5
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2016076/
%R 10.1051/m2an/2016076
%G en
%F M2AN_2017__51_5_1583_0
Li, Qin; Lu, Jianfeng; Sun, Weiran. A convergent method for linear half-space kinetic equations. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 5, pp. 1583-1615. doi: 10.1051/m2an/2016076

Cité par Sources :