Voir la notice de l'article provenant de la source Numdam
We consider an a posteriori error estimator for the Interior Penalty Discontinuous Galerkin (IPDG) approximation of the biharmonic equation based on the Hellan-Herrmann-Johnson (HHJ) mixed formulation. The error estimator is derived from a two-energies principle for the HHJ formulation and amounts to the construction of an equilibrated moment tensor which is done by local interpolation. The reliability estimate is a direct consequence of the two-energies principle and does not involve generic constants. The efficiency of the estimator follows by showing that it can be bounded from above by a residual-type estimator known to be efficient. A documentation of numerical results illustrates the performance of the estimator.
Braess, Dietrich 1 ; Hoppe, R.H.W. 1 ; Linsenmann, Christopher 1
@article{M2AN_2018__52_6_2479_0, author = {Braess, Dietrich and Hoppe, R.H.W. and Linsenmann, Christopher}, title = {A two-energies principle for the biharmonic equation and an a posteriori error estimator for an interior penalty discontinuous {Galerkin} approximation}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {2479--2504}, publisher = {EDP-Sciences}, volume = {52}, number = {6}, year = {2018}, doi = {10.1051/m2an/2016074}, zbl = {1419.31004}, mrnumber = {3911627}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2016074/} }
TY - JOUR AU - Braess, Dietrich AU - Hoppe, R.H.W. AU - Linsenmann, Christopher TI - A two-energies principle for the biharmonic equation and an a posteriori error estimator for an interior penalty discontinuous Galerkin approximation JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2018 SP - 2479 EP - 2504 VL - 52 IS - 6 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2016074/ DO - 10.1051/m2an/2016074 LA - en ID - M2AN_2018__52_6_2479_0 ER -
%0 Journal Article %A Braess, Dietrich %A Hoppe, R.H.W. %A Linsenmann, Christopher %T A two-energies principle for the biharmonic equation and an a posteriori error estimator for an interior penalty discontinuous Galerkin approximation %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2018 %P 2479-2504 %V 52 %N 6 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2016074/ %R 10.1051/m2an/2016074 %G en %F M2AN_2018__52_6_2479_0
Braess, Dietrich; Hoppe, R.H.W.; Linsenmann, Christopher. A two-energies principle for the biharmonic equation and an a posteriori error estimator for an interior penalty discontinuous Galerkin approximation. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 6, pp. 2479-2504. doi: 10.1051/m2an/2016074
Cité par Sources :