A two-energies principle for the biharmonic equation and an a posteriori error estimator for an interior penalty discontinuous Galerkin approximation
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 6, pp. 2479-2504

Voir la notice de l'article provenant de la source Numdam

We consider an a posteriori error estimator for the Interior Penalty Discontinuous Galerkin (IPDG) approximation of the biharmonic equation based on the Hellan-Herrmann-Johnson (HHJ) mixed formulation. The error estimator is derived from a two-energies principle for the HHJ formulation and amounts to the construction of an equilibrated moment tensor which is done by local interpolation. The reliability estimate is a direct consequence of the two-energies principle and does not involve generic constants. The efficiency of the estimator follows by showing that it can be bounded from above by a residual-type estimator known to be efficient. A documentation of numerical results illustrates the performance of the estimator.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2016074
Classification : 35J35, 65N30, 65N50
Keywords: Biharmonic equation, two-energies principle, interior penalty discontinuous Galerkin method, a posteriori error estimator, equilibration

Braess, Dietrich 1 ; Hoppe, R.H.W. 1 ; Linsenmann, Christopher 1

1
@article{M2AN_2018__52_6_2479_0,
     author = {Braess, Dietrich and Hoppe, R.H.W. and Linsenmann, Christopher},
     title = {A two-energies principle for the biharmonic equation and an a posteriori error estimator for an interior penalty discontinuous {Galerkin} approximation},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {2479--2504},
     publisher = {EDP-Sciences},
     volume = {52},
     number = {6},
     year = {2018},
     doi = {10.1051/m2an/2016074},
     zbl = {1419.31004},
     mrnumber = {3911627},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2016074/}
}
TY  - JOUR
AU  - Braess, Dietrich
AU  - Hoppe, R.H.W.
AU  - Linsenmann, Christopher
TI  - A two-energies principle for the biharmonic equation and an a posteriori error estimator for an interior penalty discontinuous Galerkin approximation
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2018
SP  - 2479
EP  - 2504
VL  - 52
IS  - 6
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2016074/
DO  - 10.1051/m2an/2016074
LA  - en
ID  - M2AN_2018__52_6_2479_0
ER  - 
%0 Journal Article
%A Braess, Dietrich
%A Hoppe, R.H.W.
%A Linsenmann, Christopher
%T A two-energies principle for the biharmonic equation and an a posteriori error estimator for an interior penalty discontinuous Galerkin approximation
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2018
%P 2479-2504
%V 52
%N 6
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2016074/
%R 10.1051/m2an/2016074
%G en
%F M2AN_2018__52_6_2479_0
Braess, Dietrich; Hoppe, R.H.W.; Linsenmann, Christopher. A two-energies principle for the biharmonic equation and an a posteriori error estimator for an interior penalty discontinuous Galerkin approximation. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 6, pp. 2479-2504. doi: 10.1051/m2an/2016074

Cité par Sources :