Numerical simulation of wave propagation in inhomogeneous media using Generalized Plane Waves
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 4, pp. 1387-1406

Voir la notice de l'article provenant de la source Numdam

The Trefftz Discontinuous Galerkin (TDG) method is a technique for approximating the Helmholtz equation (or other linear wave equations) using piecewise defined local solutions of the equation to approximate the global solution. When coefficients in the equation (for example, the refractive index) are piecewise constant it is common to use plane waves on each element. However when the coefficients are smooth functions of position, plane waves are no longer directly applicable. In this paper we show how Generalized Plane Waves (GPWs) can be used in a modified TDG scheme to approximate the solution for piecewise smooth coefficients in two dimensions. GPWs are approximate solutions to the equation that reduce to plane waves when the medium through which the wave propagates is constant. We shall show how to modify the TDG sesquilinear form to allow us to prove convergence of the GPW based version. The new scheme retains the high order convergence of the original TDG scheme (when the solution is smooth) and also retains the same number of degrees of freedom per element (corresponding to the directions of the GPWs). Unfortunately it looses the advantage that only skeleton integrals need to be performed. Besides proving convergence, we provide numerical examples to test our theory.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2016067
Classification : 65N12, 65N15, 65N30
Keywords: Trefftz based method, generalized plane waves, order of convergence

Imbert-Gérard, Lise-Marie 1 ; Monk, Peter 2

1 Courant Institute of Mathematical Sciences, New York University, 251 Mercer street, New York, NY 10012, USA.
2 Department of Mathematical Sciences, University of Delaware, Newark DE 19716, USA.
@article{M2AN_2017__51_4_1387_0,
     author = {Imbert-G\'erard, Lise-Marie and Monk, Peter},
     title = {Numerical simulation of wave propagation in inhomogeneous media using {Generalized} {Plane} {Waves}},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1387--1406},
     publisher = {EDP-Sciences},
     volume = {51},
     number = {4},
     year = {2017},
     doi = {10.1051/m2an/2016067},
     mrnumber = {3702418},
     zbl = {1378.65179},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2016067/}
}
TY  - JOUR
AU  - Imbert-Gérard, Lise-Marie
AU  - Monk, Peter
TI  - Numerical simulation of wave propagation in inhomogeneous media using Generalized Plane Waves
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2017
SP  - 1387
EP  - 1406
VL  - 51
IS  - 4
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2016067/
DO  - 10.1051/m2an/2016067
LA  - en
ID  - M2AN_2017__51_4_1387_0
ER  - 
%0 Journal Article
%A Imbert-Gérard, Lise-Marie
%A Monk, Peter
%T Numerical simulation of wave propagation in inhomogeneous media using Generalized Plane Waves
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2017
%P 1387-1406
%V 51
%N 4
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2016067/
%R 10.1051/m2an/2016067
%G en
%F M2AN_2017__51_4_1387_0
Imbert-Gérard, Lise-Marie; Monk, Peter. Numerical simulation of wave propagation in inhomogeneous media using Generalized Plane Waves. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 4, pp. 1387-1406. doi: 10.1051/m2an/2016067

Cité par Sources :