Finite element quasi-interpolation and best approximation
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 4, pp. 1367-1385

Voir la notice de l'article provenant de la source Numdam

This paper introduces a quasi-interpolation operator for scalar- and vector-valued finite element spaces constructed on affine, shape-regular meshes with some continuity across mesh interfaces. This operator gives optimal estimates of the best approximation error in any L p -norm assuming regularity in the fractional Sobolev spaces W r,p , where p[1,] and the smoothness index r can be arbitrarily close to zero. The operator is stable in L 1 , leaves the corresponding finite element space point-wise invariant, and can be modified to handle homogeneous boundary conditions. The theory is illustrated on H 1 -, 𝐇(curl)- and 𝐇(div)-conforming spaces.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2016066
Classification : 65D05, 65N30, 41A65
Keywords: Quasi-interpolation, finite elements, best approximation

Ern, Alexandre 1 ; Guermond, Jean-Luc 2

1 Université Paris-Est, CERMICS (ENPC), 77455 Marne-la-Vallée cedex 2, France.
2 Department of Mathematics, Texas A&M University 3368 TAMU, College Station, TX 77843, USA.
@article{M2AN_2017__51_4_1367_0,
     author = {Ern, Alexandre and Guermond, Jean-Luc},
     title = {Finite element quasi-interpolation and best approximation},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1367--1385},
     publisher = {EDP-Sciences},
     volume = {51},
     number = {4},
     year = {2017},
     doi = {10.1051/m2an/2016066},
     mrnumber = {3702417},
     zbl = {1378.65041},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2016066/}
}
TY  - JOUR
AU  - Ern, Alexandre
AU  - Guermond, Jean-Luc
TI  - Finite element quasi-interpolation and best approximation
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2017
SP  - 1367
EP  - 1385
VL  - 51
IS  - 4
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2016066/
DO  - 10.1051/m2an/2016066
LA  - en
ID  - M2AN_2017__51_4_1367_0
ER  - 
%0 Journal Article
%A Ern, Alexandre
%A Guermond, Jean-Luc
%T Finite element quasi-interpolation and best approximation
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2017
%P 1367-1385
%V 51
%N 4
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2016066/
%R 10.1051/m2an/2016066
%G en
%F M2AN_2017__51_4_1367_0
Ern, Alexandre; Guermond, Jean-Luc. Finite element quasi-interpolation and best approximation. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 4, pp. 1367-1385. doi: 10.1051/m2an/2016066

Cité par Sources :