A piecewise linear FEM for an optimal control problem of fractional operators: error analysis on curved domains
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 4, pp. 1473-1500

Voir la notice de l'article provenant de la source Numdam

We propose and analyze a new discretization technique for a linear-quadratic optimal control problem involving the fractional powers of a symmetric and uniformly elliptic second order operator; control constraints are considered. Since these fractional operators can be realized as the Dirichlet-to-Neumann map for a nonuniformly elliptic equation, we recast our problem as a nonuniformly elliptic optimal control problem. The rapid decay of the solution to this problem suggests a truncation that is suitable for numerical approximation. We propose a fully discrete scheme that is based on piecewise linear functions on quasi-uniform meshes to approximate the optimal control and first-degree tensor product functions on anisotropic meshes for the optimal state variable. We provide an a priori error analysis that relies on derived Hölder and Sobolev regularity estimates for the optimal variables and error estimates for a scheme that approximates fractional diffusion on curved domains; the latter being an extension of previous available results. The analysis is valid in any dimension. We conclude by presenting some numerical experiments that validate the derived error estimates.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2016065
Classification : 35R11, 35J70, 49J20, 49M25, 65N12, 65N30
Keywords: Linear-quadratic optimal control problem, fractional diffusion, finite elements, anisotropic estimates, curved domains

Otárola, Enrique 1

1 Departamento de Matemática, Universidad Técnica Federico Santa María, Valparaíso, Chile
@article{M2AN_2017__51_4_1473_0,
     author = {Ot\'arola, Enrique},
     title = {A piecewise linear {FEM} for an optimal control problem of fractional operators: error analysis on curved domains},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1473--1500},
     publisher = {EDP-Sciences},
     volume = {51},
     number = {4},
     year = {2017},
     doi = {10.1051/m2an/2016065},
     zbl = {1377.49030},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2016065/}
}
TY  - JOUR
AU  - Otárola, Enrique
TI  - A piecewise linear FEM for an optimal control problem of fractional operators: error analysis on curved domains
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2017
SP  - 1473
EP  - 1500
VL  - 51
IS  - 4
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2016065/
DO  - 10.1051/m2an/2016065
LA  - en
ID  - M2AN_2017__51_4_1473_0
ER  - 
%0 Journal Article
%A Otárola, Enrique
%T A piecewise linear FEM for an optimal control problem of fractional operators: error analysis on curved domains
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2017
%P 1473-1500
%V 51
%N 4
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2016065/
%R 10.1051/m2an/2016065
%G en
%F M2AN_2017__51_4_1473_0
Otárola, Enrique. A piecewise linear FEM for an optimal control problem of fractional operators: error analysis on curved domains. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 4, pp. 1473-1500. doi: 10.1051/m2an/2016065

Cité par Sources :